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Abstract: As a promising room-temperature thermoelectric material, the elastic properties of Mg3Bi2−x

Sbx (0 ≤ x ≤ 2), in which the role of van der Waals interactions is still elusive, were herein investigated.
We assessed the effects of two typical van der Waals corrections on the elasticity of Mg3Bi2−xSbx

nanocomposites using first-principles calculations within the frame of density functional theory.
The two van der Waals correction methods, PBE-D3 and vdW-DFq, were examined and compared
to PBE functionals without van der Waals correction. Interestingly, our findings reveal that the
lattice constant of the system shrinks by approximately 1% when the PBE-D3 interaction is included.
This leads to significant changes in certain mechanical properties. We conducted a comprehensive
assessment of the elastic performance of Mg3Bi2−xSbx, including Young’s modulus, Poisson’s ratio,
bulk modulus, etc., for different concentration of Sb in a 40-atom simulation box. The presence
or absence of van der Waals corrections does not change the trend of elasticity with respect to the
concentration of Sb; instead, it affects the absolute values. Our investigation not only clarifies the
influence of van der Waals correction methods on the elasticity of Mg3Bi2−xSbx, but could also help
inform the material design of room-temperature thermoelectric devices, as well as the development
of vdW corrections in DFT calculations.

Keywords: thermoelectric materials; PBE-D3; vdW-DFq; first-principles calculation; Mg3Bi2−xSbx

1. Introduction

The thermoelectric effect is a phenomenon in which a material generates an electric
current when exposed to a temperature gradient. Materials with exceptional thermo-
electric properties have significant applications in energy conversion processes, such as
refrigeration and waste heat harvesting [1,2]. In recent years, there has been a growing
interest in investigating the thermoelectric properties of Mg3Bi2−xSbx [3–11], a promising
room-temperature thermoelectric material. Notably, Mg3Bi2−xSbx exhibits a remarkable
thermoelectric figure of merit, reaching approximately 1.5 when x = 0.5 [12]. This places it
in a competitive position when compared to more traditional thermoelectric materials like
Bi2Te3 [13] and Ag2Se [14], offering advantages such as cost-effectiveness. Researchers have
delved into various aspects of Mg3Bi2−xSbx over the past few years. These investigations
have covered various areas, including band topology [15–18], phonon dynamics [19–23],
and the topological thermoelectric properties of nodal-line semimetals [22–27]. Notable
contributions, such as the work of Kanno [28], have shed light on specific characteristics
of Mg3Bi2−xSbx. For instance, it has been demonstrated that this material exhibits higher
charge carrier mobility and lower thermal conductivity, which can be attributed to its
disordered structure.
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As a prospective room-temperature high-performance thermoelectric material, it is
crucial to investigate its mechanical properties. Despite prior computational investigations
into the elastic characteristics of Mg3Bi2−xSbx using first principles, as seen in works
like those by Peng et al. [29], the consideration of van der Waals (vdW) correction is
noticeably absent although desirable. The interactions due to the fluctuation of nonlocal
charge densities are hard to model but crucial in first-principles calculations. To improve
the accuracy of our calculations and understand the impact of vdW correction within
the system, we conducted a comprehensive comparative study employing both the vdW-
DFq [30] and PBE-D3 [31] methods with reference to the impact of non-vdW correction (and
thus, PBE). Our analysis revealed intriguing findings: the inclusion of vdW interactions
resulted in a reduction in lattice constants, particularly noticeable using the PBE-D3 method,
which displayed a more significant decrease of approximately 1%. Importantly, the PBE-D3
calculations demonstrated a closer alignment with experimental data, thereby augmenting
their persuasiveness. Our investigation encompassed a thorough exploration of 40-atom
systems with varying Sb content. Remarkably, except for the specific point at x = 0.375,
neither the PBE-D3 nor the vdW-DFq methods altered the trend of elastic properties in
Mg3Bi2−xSbx as the Sb content varied. The changes were solely confined to absolute values,
usually within a range of about 10%. This comprehensive analysis not only enhances
our understanding of the mechanical behavior of Mg3Bi2−xSbx, but also underscores the
nuanced yet pivotal role of vdW correction.

2. Materials and Methods

Both Mg3Bi2 and Mg3Sb2 belong to the trigonal crystal system, with a symmetry that

belongs to the space group P
−
3m1. We have plotted all the structures in Figure 1. The

primitive unit cell consists of five atoms, as shown in Figure 1a,b for Mg3Bi2 and Mg3Sb2,
respectively. In the case of Mg3Bi2−xSbx, the objective is to maintain a constant number
of Mg atoms while gradually substituting Bi atoms with Sb atoms. To cover a wide range
of concentrations, we expanded the original unit cell to a 2 × 2 × 2 supercell, resulting
in a total of 40 atoms. Among these atoms, there are 16 atoms that are either Bi or Sb,
with concentrations ranging from 0 to 16 Sb atoms, as shown in Figure 1c–s. The initial
structures of these 17 configurations were obtained from LAsou [32,33]. LAsou is an active
learning approach that overcomes the exponential-wall problem for the effective structure
prediction of chemical-disordered materials. The lowest-energy configuration was chosen
as the representative structure for that particular concentration. For the calculation of
elastic constants, each representative structure was further optimized to a higher precision.
We applied both positive and negative strains to the six independent degrees of freedom
in the system, resulting in a total of 12 different configurations. Through first-principles
calculations, we determined the internal pressures for these 12 configurations, enabling us
to obtain the elastic constants for the entire system.

To obtain the energies and stresses of configurations, we utilized the Vienna Ab initio
Simulation Package (VASP) [34–37], a piece of software based on first-principles density
functional theory. The Perdew–Burke–Ernzerhof (PBE) [37] exchange-correlation functional
was chosen for the calculations. For the 40-atom system calculations, we utilized the
Methfessel–Paxton [38] method to generate k-points centered at the gamma point, with a
grid setting of 4 × 4 × 2. The energy cutoff for the plane wave basis used in the calculations
was 450 eV. During structural optimization, a force convergence criterion of 10−3 eV/Å
was used, while the electronic convergence criterion was 10−6 eV. We adopted Gaussian
smearing and the smearing width was 0.02 eV. We used VASPKIT [39] to process the
obtained elastic constants tensor, allowing us to extract Young’s moduli and Poisson’s ratios
for different directions [40]. Given the significant number of configurations, we integrated
the calculation workflow onto the MatCloud [41] platform for improved efficiency. This
cloud-based approach allowed us to efficiently distribute multiple jobs to high-performance
computing clusters, optimizing resource utilization for extensive system calculations.
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Figure 1. The atomistic structures of Mg3Bi2−xSbx: the 5-atom unit cell of (a) Mg3Bi2 and (b) Mg3Sb2,
and (c–s) the 40-atom cells of Mg3Bi2−xSbx for x ranging from 0 to 2 with increments of 0.125.

For vdW corrections, two distinct approaches were utilized: PBE-D3 and vdW-DFq.
The PBE-D3 method, which was developed by Grimme et al. [30], is designed to accurately
model the vdW dispersion energy-correction term. The incorporation of empirical parame-
ters in density functional theory has been proposed as a means to address its limitations.
This approach has shown promising results, especially in the case of systems that involve
heavy elements. On the contrary, vdW-DFq correction, as proposed by Peng et al. [31],
presents a novel approach for precise density and geometry calculations, with a specific
focus on semihard materials. Both of these methods have been effectively integrated into
the VASP-5.4.4 software. By manipulating various parameters, we successfully performed
a range of calculations using these methodologies. PBE-D3 addresses the limitations of den-
sity functional theory by integrating empirical parameters, whereas vdW-DFq prioritizes
the precise computation of the density and geometric characteristics of semihard materials.

3. Results

Prior to examining the vdW corrections, we conducted a reference study [29] to
compare the effects of precision enhancement on various system parameters without
considering vdW correction. This comparison encompasses lattice constants “a” (in Å) and
“c” (in Å), elastic constants C11, C33, C44, and C12, as well as bulk and shear moduli (in
GPa). The results of our precision enhancement are shown in red, while the results from
previous work are shown in blue, in Figure 2.
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Figure 2. Lattice constants a (a) and c (b), elastic constants (c), and elastic modulus (d) of Mg3Bi2−xSbx

as a function of the concentration of Sb atoms, compared with ref. [29]. The red lines denote values
from this work and the blue ones represent values from ref. [29].

Upon comparison, it becomes evident that the impact of precision enhancement
on lattice constant “a” is not particularly significant. However, for lattice constant “c”,
especially at lower values of Sb content, the impact is relatively more significant. In contrast,
for higher concentrations of Sb, the precision used in previous calculations appears to be
sufficient. Regarding elastic constants and moduli, the impact of enhancing precision is
usually negligible, except for the Mg3Bi2 system, which exhibits more noticeable variations.
These comparisons suggest that when performing calculations on Mg3Bi2−xSbx, it may be
possible to decrease precision to some extent in systems with higher Sb content in order to
improve computational efficiency, while still maintaining acceptable accuracy. Conversely,
for systems with lower Sb content, it is advisable to increase precision.

The comparison with previous work [29] indicates that precision adjustments in
Mg3Bi2−xSbx calculations can be customized based on the Sb concentration in the system.
It is recommended to use higher-precision for systems with lower Sb content to ensure
accuracy, while systems with higher Sb content can benefit from reduced precision to
improve computational efficiency. Additionally, this study adds credibility to our current
efforts involving the inclusion of vdW corrections.

All the calculated configurations of Mg3Bi2−xSbx belong to the trigonal crystal system.
Using first-principles calculations, we obtained the optimal structures for each configura-
tion. For the trigonal crystal system, our focus was on lattice constants “a” and “c”. We
plotted the lattice constants that vary with different Sb atom content in Figure 3. It is clear
from Figure 3 that, regardless of the calculation method used, the lattice constants decrease
as the Sb atom content increases. Considering the impact of different functionals, it can
be observed that the influence of vdW-DFq on the lattice constants is minimal. For lattice
constant “a”, there is a decrease of approximately 0.4%. The effect on lattice constant “c” is
negligible. However, PBE-D3 correction has a relatively more noticeable impact. Taking the
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Mg3Bi2 system as an example, lattice constant “a” decreases by 1.3%, while lattice constant
“c” is affected by 1.1%.
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Figure 3. Lattice constants of Mg3Bi2−xSbx. The four methods are color-coded: red (PBE), green
(vdW-DFq), blue (PBE-D3), and cyan (experimental data [42]). (a) The trend of lattice constant “a”
with respect to Sb content. (b) Lattice constant “c” as a function of Sb content. (c) Comparison of lattice
constant “a” among different Mg3Bi2 and Mg3Sb2 structures using various methods. (d) Comparison
of lattice constant “c” among different Mg3Bi2 and Mg3Sb2 structures using various methods.

We conducted a comparison between the experimental lattice constants of Mg3Bi2
and Mg3Sb2, as illustrated in Figure 3 c,d, respectively. The figure clearly demonstrates a
close alignment between the experimental lattice constants and those obtained through the
application of the PBE-D3 method. Therefore, this comparison provides robust evidence in
favor of employing PBE-D3 correction in calculations related to Mg3Bi2−xSbx.

Upon subjecting the system to deformation along its six independent degrees of
freedom, we obtained a 6 × 6 elastic constant tensor. For the trigonal crystal system, the
elastic tensor possesses eight independent components, namely, C11, C33, C44, C12, C13, C14,
C15, and C45. We have illustrated the variations in Figure 4a,b, depicting the changes in Sb
content. Regardless of the adoption of vdW functionals, the values of these components
exhibit a linear increase as x changes, except for the points at Sb concentrations of 0.1875
and 0.25 (corresponding to x = 0.375 and x = 0.5). Specifically, for the C44 component, the
PBE-D3 calculations generally yield higher results than those without vdW corrections,
showing an increase of approximately 16%, except for the pure Mg3Bi2 state. Comparatively,
the results of vdW-DFq exhibit some variation, with values oscillating and differing by
approximately 8% from the PBE calculations.
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For the C12 component, it is noticeable that the results from all three methods are
quite similar. Comparing the results obtained from vdW-DFq with those obtained using
only PBE without considering vdW corrections, there are some variations in the values for
different structures within Mg3Bi2−xSbx, with an average change of approximately 2.5%.
For PBE-D3, the results for all structures, except for the one at an Sb concentration of 0.1875,
are generally larger than those obtained with PBE. The structure at x = 0.375 is about 2.3%
smaller than PBE. Overall, there is a numerical difference of about 5.5%.

Concerning the C33 component, once again, the results from vdW-DFq and PBE are
relatively close, with differences of approximately 2.4%. However, the results obtained
with PBE-D3 are, on average, about 8.8% larger than those obtained with PBE. As for the
C44 component, all methods show a decrease at an Sb concentration of 0.1875, while at
other points, they increase with increasing Sb content. In the calculation of this component,
the influence of vdW is more significant. Compared to PBE calculations, the results from
vdW-DFq are, on average, 8.3% higher, while the results from PBE-D3 are, on average,
16.8% higher. As for the components in Figure 4b, C15 and C45 are both close to 0 overall,
while both C13 and C14 show an increase with Sb content. The results obtained from various
vdW methods differ from those of the PBE method by approximately 6%.

Typically, the bulk modulus is used to describe a material’s resistance to compression
and expansion in volume, while the shear modulus characterizes its resistance to shearing
forces. In the context of crystalline systems, both the bulk and shear moduli exhibit varying
degrees of anisotropy. To facilitate the comparative analysis of the variation in bulk and shear
moduli for different Sb contents, we adopted the Voigt-Reuss-Hill approximation [43–45] to
describe the changes in these moduli. We utilized the following formulas to calculate the
bulk modulus and shear modulus:

B = 1
2 (BV + BR)

G = 1
2 (GV + GR)

(1)

where BV, BR, GV, and GR can be obtained from the following expressions based on the
elastic constant and its compliance S, which is often used to describe the compliance of
materials and can be calculated by taking the inverse of the elastic tensor:

BV = 1
9 (C11 + C22 + C33) +

2
9 (C23 + C13 + C12)

BR = 1
3(S11+S22+S33)+6(S23+S13+S12)

(2)
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GV = 1
5 [(C11 + C22 + C33)− (C23 + C13 + C12)] +

3
5 (C44 + C55 + C66)

GR = 1
12[(S11+S22+S33)−(S23+S13+S12)]+9((S44+S55+S66))

(3)

This relationship is depicted in Figure 4c. It is evident that with increasing Sb content,
except for a few points, both the shear and bulk moduli show an increase. Regarding
the influence of vdW corrections on the bulk modulus, the results obtained from the PBE-
D3 calculations are generally higher compared to those from vdW-DFq and PBE. Taking
Mg3Sb2 as an example, the bulk moduli calculated using the three methods are 44.34 GPa
(PBE-D3), 42.41 GPa (vdW-DFq), and 42.14 GPa (PBE), respectively. The PBE-D3 results are
approximately 5.2% higher than the PBE results. Overall, the bulk moduli obtained using
PBE-D3 are approximately 5.5% higher than those obtained without vdW corrections. In
comparison, the impact of vdW-DFq is relatively smaller, with numerical differences of
approximately 2%.

Concerning the shear modulus, both the PBE-D3 and vdW-DFq results are higher
by about 10% compared to the PBE results. However, there are some minor differences
in the details. For instance, in the case of PBE-D3, the result at the point where the Sb
concentration is 0.1875 is similar to those obtained without vdW corrections. On the other
hand, for vdW-DFq, the points at Sb concentrations of 0.9375 and 0.875 (corresponding
x = 1.875 and x = 1.75) closely align with the PBE results. This alignment is understandable
because the corresponding moduli are derived from the elements of the elastic constants’
matrix, and their trends also align with the trends of the elastic constants. For comparison,
we have indicated the experimental [46] values for the bulk and shear moduli of Mg3Bi2
and Mg3Sb2 as cyan dashed points in Figure 4c. It can be observed that, except for the bulk
modulus of Mg3Sb2, the calculated moduli closely match the experimental values.

We have simultaneously illustrated the trends in volume, bulk modulus, and average
valence electron density (VED). VED is defined as the number of valence electrons in a unit
volume. These trends are compared for the three methods with respect to the concentration
of Sb atoms, as shown in Figure 4. Since the numbers of valence electrons for the elements
Mg, Bi, and Sb are 2, 5, and 5, respectively, all 40-atom cell structures of Mg3Bi2−xSbx
have the same number of total valence electrons, which is 128. Due to the disparities in
lattice constants obtained from different calculation methods, these differences are further
magnified at the volume level. The lattice volume decreases as the content of Sb increases.
Additionally, when employing the PBE-D3 method for vdW simulations, the volume is
approximately 5% smaller than when not using vdW corrections. It is worth noting that
VED is different from valence electron concentration (VEC), which is defined as the number
of valence electrons in a formula unit [47].

According to the findings of a previous study [29], in the Mg3Bi2−xSbx system, except
for the special point at an Sb concentration of 0.25, the bulk modulus demonstrates a linear
relationship with the VED. This conclusion is supported by the observations in Figure 4f.
However, when improving computational precision, the linear relationship becomes less
noticeable when using the vdW-DFq results. In contrast, the results from PBE-D3 still
exhibit a linearly increasing trend, although with some deviations at several points for
x < 0.5. Such a trend can be understood as follows: a higher valence electron density implies
stronger atomic interactions, and consequently, a higher bulk modulus. This ascending
trend indicates that we can intentionally adjust the relevant elastic properties of the material
by consciously manipulating VED, such as through doping with other elements like Co
and Te [28,48].

Furthermore, we employed Jiang’s model [49] to investigate the Vickers hardness of
the Mg3Bi2−xSbx system. This empirical model establishes a linear relationship between the
Vickers hardness and Young’s modulus. Utilizing the previously calculated bulk and shear
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moduli, we can derive the Young’s modulus (E) using the following formula. Subsequently,
we can deduce the Vickers hardness (V):

E = 9GB
3B+G

V = 0.0608E
(4)

We calculated the Young’s Modulus and the corresponding Vickers hardness (in HV)
for various Sb concentrations in Mg3Bi2−xSbx and graphed the hardness values in Figure 5a.
For the Mg3Sb2 system, we obtained Young’s Modulus values of 43.69 GPa, 47.58 GPa, and
45.82 GPa, using the PBE, PBE-D3, and vdW-DFq methods, respectively. These values are
in close agreement with the experimental Young’s Modulus of approximately 41 GPa for
Mg3Sb2, indicating good consistency between our calculations and experimental data [46].
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Figure 5. Comparison of (a) Vickers hardness, (b) ductility, (c) Debye temperature and (d) anisotropies
from the three methods. Red (PBE), green (vdW-DFq), blue (PBE-D3).

As the Sb content increases, the hardness also shows an upward trend. The three
calculation methods exhibit slight discrepancies in detail. The overall hardness calculated
using the PBE-D3 and vdW-DFq methods is higher than that obtained without considering
vdW corrections. However, at the point of Mg3Bi2, the results obtained using vdW-DFq
are lower than those from PBE, by approximately 5.5%. At Sb concentrations of 0.9375 and
0.875, the vdW-DFq result closely resembles that without vdW, while the PBE-D3 result is
significantly higher.

Similarly, the Pugh ratio [50] was employed to evaluate the ductility of the system.
The Pugh ratio is derived using a specific formula (B/G), where the symbols B and G in the
equation represent the bulk modulus and shear modulus, respectively. The outcomes of
this comparison are graphically represented in Figure 5b. Regardless of the computational
approach employed, the outcomes exhibit a range between 2 and 3. According to empirical
observations, materials that have a Pugh ratio greater than 1.75 are regarded as exhibiting
toughness. Consequently, all concentrations within the system under study can be consid-
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ered as demonstrating resilience. In contrast, the widely recognized thermoelectric material
Bi2Te3 exhibits a Pugh ratio of 1.62, suggesting that the Mg3Bi2−xSbx system possesses
relatively lower brittleness in comparison.

The Debye temperature [51] is a parameter that represents the highest-frequency
lattice vibrations and is commonly employed as an indicator of the strength of interatomic
bonding. It can be determined by employing the following formula:

Θ =
h

kB

(
3q
4π

Nρ

M

) 1
3
vm (5)

where h, kB, and N are the Planck constant, Boltzmann constant, and Avogadro constant,
respectively; ρ is the mass density; M is the molecular weight of all the atoms in the
supercell; and q is the number of atoms in the unit cell. The average sound velocity (vm)
is defined as a combination of the shear sound velocity (vs) and the longitudinal sound
velocity (vl):

vm =

[
1
3

(
2
v3

s
+

1
v3

l

)]− 1
3

(6)

where vs =
√

G/ρ and vl =
√(

B + 3
4 G
)
/ρ, respectively.

The results of the Debye temperature calculations are presented in Figure 5c. Here, it
is apparent that the inclusion of PBE-D3 and vdW-DFq increases the Debye temperature
compared to cases where vdW is not considered, and the value is roughly 7% higher when
PBE-D3 is used. As the content of Sb increases, there is a corresponding increase in the
Debye temperature, indicating strengthening of the interatomic bonding within the system.
The results obtained using the vdW-DFq method generally align with the trend observed
when vdW correction is not considered.

We describe the anisotropy of the system through three indices, AU, AG, and AB,
which are obtained using the following formula [52,53]:

AU = 5GV
GR

+ BV
BR

− 6
AG = GV−GR

GV+GR
× 100

AB = BV−BR
BV+BR

× 100
(7)

We have presented the results in Figure 5d, where AB is observed to be close to 0. This
suggests that the system exhibits relatively consistent properties in terms of bulk modulus
across different crystallographic directions. This observation is further confirmed by the
3D plot of the bulk modulus. The maximum and minimum values of the bulk modulus in
different directions for all systems are within 7 GPa. In contrast, when compared to Bi2Te3,
which has an AB value of 1.58, indicating strong anisotropy as it exceeds 1, Mg3Bi2−xSbx
exhibits significantly lower anisotropy. In the case of the shear modulus, the systems at
various concentrations exhibit noticeable anisotropy due to the relatively large values of
AG. This anisotropy increases with higher Sb content. From the perspective of the AU
parameter, Mg3Bi2−xSbx exhibits significant directionality when compared to other alloys
such as Zr5Sn3X (X = B, Nb, and Sn), where their AU values are all within 0.5. Except for
Mg3Bi2, all other Sb concentrations have AU values above 0.7, and these values increase
with higher Sb content. When considering the AU parameter, the use of vdW introduces
some bias in the results, but it does not affect the overall trend with increasing Sb content.

To enhance our understanding of the mechanical anisotropy of Mg3Bi2−xSbx, we
employed VASPKIT to extract Young’s moduli for different crystallographic orientations.
We then visualized these data as 3D surface plots, where the distance from the origin to
each point on the surface represents the Young’s modulus in the corresponding direction.
Furthermore, to visualize the magnitude of Young’s modulus more conveniently, we used
different colors on the surface to represent different values of Young’s modulus. In Figure 6,
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we present the Young’s modulus for different Sb concentrations, obtained via the vdW-DFq
calculation method.
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Figure 6. Three-dimensional Young’s modulus distribution of Mg3Bi2−xSbx (0 ≤ x ≤ 2) at various x
of Sb contents (a–q) from the vdW-DFq calculations. Direction-dependent Young’s modulus for every
potency of Sb at an interval of 0.125, ranging from 0 to 2. The color bar shows the rage of Young’s
modulus with unit of GPa.

It is evident that, for all concentrations, the maximum Young’s modulus is obtained
along the x3 direction, which corresponds to the lattice vector “c” within the crystal cell. All
surfaces for the systems take the form of a hexahedron (a six-faced figure), with the degree
of concavity varying at different concentrations, reflecting differences in anisotropy. Within
the x1–x2 plane, the edges of these hexahedra are visible. In these materials, the Young’s
modulus is relatively high. The manifestation of this characteristic is primarily due to the
occupation of Mg2+ ions at the symmetric positions 3 m and −3 m within the unit cell. As
the Sb content increases, it can be observed that the surface expands significantly. This also
implies that the Young’s modulus is increasing in all directions. As mentioned earlier, this
is related to the enhanced atomic interactions resulting from the addition of Sb atoms.

We examined the Young’s modulus in the x3 direction using the three calculation
methods. The results are displayed in Figure 7a. In all other cases, the Young’s modulus
in the x3 direction ranges from 55 GPa to 75 GPa. When vdW corrections are taken into
account, the Young’s modulus in the x3 direction shows a linear increase with increasing
Sb content. However, for the vdW-DFq calculations, this linear trend deviates somewhat.
Nevertheless, the values obtained with vdW-DFq are relatively close to those obtained
without vdW corrections.
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(b) Variation in Poisson’s ratio in the x3 direction with changing Sb concentration.

Considering the influence of vdW corrections, the Young’s modulus was generally
higher than when these vdW corrections were not considered. This aligns with expectations
because both an increase in Sb content and the inclusion of vdW corrections lead to a
reduction in lattice constants. This reduction results in closer atomic distances and stronger
interatomic interactions, which consequently yield higher Young’s moduli.

When a material is subjected to deformation in one direction, it also undergoes strain
in the transverse directions in general. This phenomenon is known as the Poisson effect.
Poisson’s ratio is used to measure this effect and is defined as the ratio of transverse strain
to longitudinal strain. Poisson’s ratio reflects a material’s hardness to some extent. Similar
to Young’s modulus, Poisson’s ratio of Mg3Bi2−xSbx also exhibits significant anisotropy.

To better visualize this anisotropy, we created 3D plots of the Poisson’s ratio for
various Sb concentrations, as shown in Figure 8. These results are based on calculations
with vdW-DFq for the vdW corrections. Unlike Young’s modulus, Poisson’s ratio displays
irregularities, with values ranging from −0.1 to 0.8 in different directions. In certain
directions, Poisson’s ratio approaches zero or even becomes negative. This indicates
that stretching in these directions does not result in transverse contraction, which is a
phenomenon that is less commonly observed in traditional alloys.

Similarly, to compare the influence of vdW corrections, we examined Poisson’s ratio
in the x3 direction, as depicted in Figure 7b. With few exceptions, the Poisson’s ratio in
the x3 direction of Mg3Bi2−xSbx decreases linearly with increasing Sb content. With the
inclusion of vdW effects, for the PBE-D3 method, the Poisson’s ratio results are relatively
close to those without vdW. In contrast, for the vdW-DFq method, the results are slightly
lower than those without vdW, but its linear trend of decreasing with increasing Sb content
is more pronounced.



Materials 2023, 16, 6482 12 of 15Materials 2023, 16, x FOR PEER REVIEW 12 of 15 
 

 

 

Figure 8. Poisson’s ratio distribution of Mg3Bi2−xSbx (0 ≤ x ≤ 2) at various Sb contents. (a–q) Direction-

dependent Poisson’s ratio at different Sb contents of x, ranging from 0 to 2, calculated via vdW-DFq. 

Outer surface denotes the maximum Poisson’s ratio and inner surface is the contrary. 

Similarly, to compare the influence of vdW corrections, we examined Poisson’s ratio 

in the x3 direction, as depicted in Figure 7b. With few exceptions, the Poisson’s ratio in 

the x3 direction of Mg3Bi2−xSbx decreases linearly with increasing Sb content. With the in-

clusion of vdW effects, for the PBE-D3 method, the Poisson’s ratio results are relatively 

close to those without vdW. In contrast, for the vdW-DFq method, the results are slightly 

lower than those without vdW, but its linear trend of decreasing with increasing Sb con-

tent is more pronounced. 

4. Conclusions 

A systematic investigation was conducted into the mechanical properties of the 

room-temperature thermoelectric material Mg3Bi2−xSbx (0 ≤ x ≤ 2) through the utilization 

of first-principles calculations within the frame of density functional theory. By conduct-

ing a comparative analysis of the impacts of distinct vdW corrections, we have provided 

a comprehensive understanding of the computational performance of these three methods 

and their outcomes. The influence of precision is contingent upon the concentration of Sb 

atoms. Higher-precision calculations have a negligible impact on the final optimized lat-

tice constants, and this impact diminishes as the concentration of Sb increases. Addition-

ally, in the context of elastic constants and elasticity, it was found that higher precision 

has minimal impact, except for the Mg3Bi2 system. 

We conducted a comprehensive assessment of the influence of vdW corrections on 

the elasticity of the Mg3Bi2−xSbx (0 ≤ x ≤ 2) nanocomposites. We employed both the PBE-D3 

and vdW-DFq methodologies for nonlocal vdW corrections. The PBE-D3 method has a 

discernible effect of approximately 1% on lattice constants. In terms of other properties, 

such as elastic constant and bulk modulus, the influence of this method is generally within 

a range of 10%, except for a few outliers. The vdW-DFq method has a limited influence. 

Figure 8. Poisson’s ratio distribution of Mg3Bi2−xSbx (0 ≤ x ≤ 2) at various Sb contents.
(a–q) Direction-dependent Poisson’s ratio at different Sb contents of x, ranging from 0 to 2, cal-
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4. Conclusions

A systematic investigation was conducted into the mechanical properties of the room-
temperature thermoelectric material Mg3Bi2−xSbx (0 ≤ x ≤ 2) through the utilization of
first-principles calculations within the frame of density functional theory. By conducting
a comparative analysis of the impacts of distinct vdW corrections, we have provided a
comprehensive understanding of the computational performance of these three methods
and their outcomes. The influence of precision is contingent upon the concentration of Sb
atoms. Higher-precision calculations have a negligible impact on the final optimized lattice
constants, and this impact diminishes as the concentration of Sb increases. Additionally,
in the context of elastic constants and elasticity, it was found that higher precision has
minimal impact, except for the Mg3Bi2 system.

We conducted a comprehensive assessment of the influence of vdW corrections on the
elasticity of the Mg3Bi2−xSbx (0 ≤ x ≤ 2) nanocomposites. We employed both the PBE-D3
and vdW-DFq methodologies for nonlocal vdW corrections. The PBE-D3 method has a
discernible effect of approximately 1% on lattice constants. In terms of other properties,
such as elastic constant and bulk modulus, the influence of this method is generally within
a range of 10%, except for a few outliers. The vdW-DFq method has a limited influence.
Furthermore, the inclusion of vdW interactions does not significantly alter the patterns
observed in various properties as the concentration of Sb vary, except for a few anomalous
data points. In the case of lattice constants, the results obtained using the PBE-D3 method
are closer to the experimental values.

Our results suggest the necessity of employing the PBE-D3 method to consider vdW
corrections for more accurate prediction of the properties of Mg3Bi2−xSbx by means of
density functional theory calculations. This assessment might be helpful in the further
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development of vdW corrections and the material design of room-temperature thermoelec-
tric materials.
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