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Multiscale dynamics in streamwise-rotating
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In this paper the multiscale dynamics of streamwise-rotating channel turbulence is studied
through direct numerical simulations. Using the generalized Kolmogorov equation, we
find that as rotation becomes stronger, the turbulence in the buffer layer is obviously
reduced by the intense spatial turbulent convection. On the contrary, in other layers,
the turbulence is strengthened mainly by the modified production peak, the intense
spatial turbulent convection and the suppressed forward energy cascades. It is also
discovered that under a system rotation, small- and large-scale inclined structures
have different angles with the streamwise direction, and the difference is strengthened
with increasing rotation rates. The multiscale inclined structures are further confirmed
quantitatively through a newly defined angle based on the velocity vector. Through the
budget balance of Reynolds stresses and the hairpin vortex model, it is discovered that
the Coriolis force and the pressure–velocity correlation are responsible for sustaining
the inclined structures. The Coriolis force directly decreases the inclination angles but
indirectly induces inclined structures in a more predominant way. The pressure–velocity
correlation term is related to the strain rate tensor. Finally, the anisotropic generalized
Kolmogorov equation is used to validate the above findings and reveals that the multiscale
behaviours of the inclined structures are mainly induced by the mean spanwise velocity
gradients.

Key words: rotating turbulence, turbulence simulation

1. Introduction

Wall-bounded turbulent flows subject to rotation are important in terms of engineering
(Jiménez 2011; Jing & Ducoin 2020). When rotation is coupled to the wall-bound
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turbulence as a body force, the near-wall dynamics is different from those in traditional
boundary layers (Jiménez & Pinelli 1999).

The study of rotation in wall-bound turbulence began with experiments of the
spanwise-rotating channel (Johnston, Halleent & Lezius 1972). In channel turbulence with
spanwise rotation, the symmetry in the wall-normal direction is broken (Kristoffersen &
Andersson 1993). Oberlack (2001) used group analyses to deduce the linear profiles of
the mean velocity. The linear profiles and related scaling laws were further discussed
by Xia, Shi & Chen (2016). Additionally, couples of Taylor–Görtler-like (TGL) vortices
were found in spanwise-rotating channel turbulence (Dai, Huang & Xu 2016). Brethouwer
(2017) found that the intensity and size of the TGL vortices decrease at high rotation
rates. In streamwise-rotating channel turbulence the symmetry is still conserved (Oberlack,
Cabot & Rogers 1999). However, a secondary mean flow, i.e. a mean flow perpendicular
to the streamwise direction, is induced by streamwise rotation (Wu & Kasagi 2004; Dai,
Huang & Xu 2019). The secondary flow is inverted around the channel centre (Yang, Su &
Wu 2010). Such an inverse secondary mean flow has not been observed in experiments
due to the measurement accuracy (Recktenwald et al. 2007; Alkishriwi, Meinke &
Schröder 2008; Recktenwald, Alkishriwi & Schröder 2009). However, Oberlack et al.
(2006) used group analyses to analytically study streamwise-rotating channel turbulence
and qualitatively found the existence of the inverse secondary mean flow. Masuda, Fukuda
& Nagata (2008) further verified this through instability analysis. Yang et al. (2010)
used helical wave decomposition to deduce the inviscid inertial wave solution, which
gave a trigonometric profile. This prediction is suitable for the spanwise mean velocity
in the bulk region but is not reasonable for the streamwise mean velocity due to the
possible effects of the external mean pressure gradient. Yang et al. (2020a) studied
the non-monotonic tendency of the spanwise mean velocity with increasing rotation
rates and attributed it to the self-constraint mechanism of the Reynolds stress 〈u2u3〉.
Yang et al. (2018) discussed the pressure fluctuations in this flow. Additionally, since
streamwise-rotating channel turbulence is a typical chirality-asymmetric flow, helicity
(H = u · ω) is also an important quantity here. Recently, Yu et al. (2022) and Yan, Li & Yu
(2022) discussed the distribution and budget balance of the helicity in streamwise-rotating
channel turbulence. In terms of coherent structures, Yang et al. (2010) found that when
the rotation number Roτ = 30, the inclined vortex columns moving downstream are
likely the carriers of inertial waves. Yang & Wang (2018) found that TGL vortices exist
when Roτ = 150. These TGL vortices have negligible inclination angles and are almost
aligned with the rotation axis x1. Their spanwise length scale is independent of Roτ ,
but their streamwise length scale exhibits a considerable dependence on Roτ (Yang &
Wang 2018). Dai et al. (2019) studied the coherent structures in the streamwise-rotating
channel through direct numerical simulations (DNS) and large eddy simulations.
They found that the elongated streamwise vortices are tilted toward the spanwise
direction, and the inclination angle initially increases and then decreases with increasing
rotation rates. However, the mechanisms for this non-monotonic tendency are still not
clear.

Turbulence is in fact a multiscale physical problem. To study the interscale dynamics,
various approaches have been applied by researchers (Lumley 1964; Danaila et al. 2001;
Dunn & Morrison 2003). Utilizing the Fourier transform, Lumley (1964) first derived
the spectral energy equation for the interscale energy transfer. Bolotnov et al. (2010)
statistically studied the interscale energy transfer in channel turbulence with a low
Reynolds number. Dunn & Morrison (2003) used orthogonal wavelets to analyse spatial
and interscale (both forward and backward) energy transfers. However, these approaches
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do not allow for a distinction between spatial and interscale transfers in the wall-normal
direction, which can be addressed using the second-order structure function and its
budget balance (Cimarelli et al. 2016; Mizuno 2016). The second-order structure function
has been used by Kolmogorov (1941) to study the energy cascades in homogeneous
isotropic turbulence, and its evolution equation is known as the Kolmogorov equation.
The second-order structure function can be interpreted as the amount of energy of a
given scale at a certain position and is also called the scale energy (Marati, Casciola &
Piva 2004; Cimarelli et al. 2015, 2016). The approach was first generalized to channel
turbulence by Danaila et al. (2001) and further extended to general flows by Hill (2002). In
these flows, the extended budget equation is called the generalized Kolmogorov equation
(GKE). Then, the GKE was used to study the energy cascades in channel turbulence by
Marati et al. (2004). Based on the GKE, Cimarelli, De Angelis & Casciola (2013) found
the near-wall turbulence regeneration cycle and the outer self-sustaining mechanism in
channel turbulence. Cimarelli et al. (2015) found that the energy source in the outer layer
modifies nearby energy fluxes and then affects the energy transfers in the vicinity of the
wall. Cimarelli et al. (2016) further used the GKE to study the interscale energy transfer
in the wall-normal direction and found two ways of interscale energy transfer, consistent
with the classical attached vortex model (Marusic & Monty 2019). The GKE has also
been used to study the dynamics in flows with separation and reattachment (Mollicone
et al. 2018). The anisotropic generalized Kolmogorov equation (AGKE), i.e. the budget
equation for the second-order structure function of Reynolds stresses, was first investigated
by Gatti et al. (2020), who took more details of the interscale dynamics into consideration.
Notably, even if the scale energy is strictly related to the energy spectra, it is not an
intensive quantity (Cimarelli et al. 2015). At small scales, the scale energy could be
approximately treated as the eddy intensity of these scales. However, this interpretation
is not suitable when the separation is sufficiently large. In fact, as the scale tends to be
infinite, the scale energy is reduced to four times the turbulence kinetic energy (TKE)
(Marati et al. 2004). Yang et al. (2010) used helical wave decomposition to investigate the
interscale dynamics in streamwise-rotating channel turbulence. However, this approach
cannot give the spatial-local interscale dynamics, such as the near-wall dynamics. Yang
et al. (2020b) took the interscale transfer into consideration via the budget balance for
the spectral TKE. They discussed the sustaining mechanisms of the TGL vortices and
found that four key processes are responsible for sustaining the motion of large-scale TGL
vortices.

In summary, in streamwise-rotating channel turbulence, the study of near-wall
multiscale dynamics under moderate rotation rates is still insufficient. This paper
focuses on the coupling effects of moderate rotation and boundary layers on turbulence.
Specifically, basic turbulence statistics are first examined, where we find the scale
discrepancy of inclined structures. To be more concrete, the scale discrepancy is
further identified using the newly defined angle based on the velocity vector. The
focus then shifts to the sustaining mechanisms of the inclined structures. Several key
terms in the Reynolds stress budget balance are identified, and corresponding physical
processes are illustrated through ejections and sweeps in the hairpin vortex model.
Finally, a mechanism responsible for the scale discrepancies is given utilizing the
AGKE.

The paper is organized as follows. We give the details of the simulations and basic
statistics in § 2. Next, in § 3 we analyse the basic interscale dynamics through the scale
energy and GKE. Section 4 gives the main results of this paper, where we identify the
multiscale inclined structures and their sustaining mechanisms. Finally, conclusions are
given in § 5.
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Figure 1. Sketch of the streamwise-rotating channel turbulence. The red and blue lines are the mean velocity
profiles.

2. Numerical simulations

2.1. Numerical set-up
The incompressible Navier–Stokes equations are

∂Ui

∂t
+ Uj

∂Ui

∂xj
= − 1

ρ

∂p
∂xi
+ ν

∂2Ui

∂xj∂xj
+ 2εij1UjΩ − Π0

ρ
δi1,

∂Ui

∂xi
= 0,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (2.1)

where Ui is the velocity, p is the total pressure including the centrifugal effects (Davidson
2013), ρ is the density, ν is the kinematic viscosity, Ω is the rotation rate in the
streamwise direction, Π0 is a constant streamwise pressure gradient that drives the flow,
δij is the Kronecker delta and εijk is the Levi-Civita symbol. Equation (2.1) is solved
through a pseudo-spectral code using Fourier series in the streamwise and spanwise
directions and Chebyshev polynomials in the wall-normal direction. The 3/2 rule is
utilized to remove aliasing errors. A third-order time-splitting method is used for time
advancement. More details can be found in previous works (Deng & Xu 2012; Yang &
Wang 2018). A sketch of the computational configuration and the mean velocities is given
in figure 1.

There are two non-dimensional parameters based on the friction velocity, i.e. the
Reynolds and rotation numbers

Reτ = uτ h/ν, Roτ = 2Ωh/uτ , (2.2a,b)

where uτ is the friction velocity and h = 1 is the channel half-width. In addition, the
friction velocity uτ and the viscous length scale ν/uτ are used to normalize the quantities
in the following analyses, which are marked by the superscript ‘+’. Our DNS data include
five cases, in which Roτ ranges from 0 to 60 and Reτ = 180 or 395. Except for ST30S and
ST60S, the computational domains of the cases are selected based on the third criterion
of Yang & Wang (2018), which has been verified by Yu et al. (2022). Cases ST30S and
ST60S have relatively small streamwise sizes. The data used in this paper are time averaged
over 40 h/uτ after reaching the statistical steady state. As verified through the approach
of Russo & Luchini (2017), the time slices are independent of each other. The relative
standard deviation of the data is less than 1 %. In addition, the reliability of the data can
also be confirmed through the balance of the budget equation in the following analysis.
The parameters are summarized in table 1.
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Case L1 × 2h× L3 N1 × Ny × N3 Reτ Roτ

ST00 32π× 2× 8π 1024× 128× 512 180 0
ST07 32π× 2× 8π 1024× 128× 512 180 7.5
ST07R 32π× 2× 8π 4096× 192× 1536 395 7.5
ST15 64π× 2× 8π 2048× 128× 512 180 15
ST30 128π× 2× 8π 4096× 128× 512 180 30
ST30S 64π× 2× 8π 2048× 128× 512 180 30
ST60S 128π× 2× 8π 4096× 128× 512 180 60

Table 1. Computational descriptions of simulations.
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Figure 2. Profiles of mean velocities in the (a) streamwise and (b) spanwise directions. The inset in (b) gives
the spanwise velocity in log-law coordinates. The black dashed lines in (a) represent the linear law and log law
with Kármán constant κ = 0.4. The dashed lines in (b) indicate the linear law and the trigonometric function
A sin(2πf (x+2 − 180)) with frequency f = 1/169.7 and amplitude A = 0.17.

2.2. Basic turbulence statistics
Figure 2 gives the profiles of mean velocities 〈U1〉+ and 〈U3〉+, where 〈·〉 represents
averaging over time and the x1 − x3 plane. In the following analysis, if the non-dimensional
wall-normal coordinates (x+2 ) are used, then the data in the upper domain (x2 ∈ [0, 1])
are discussed by default. The black dashed lines in figure 2(a) represent the linear law
and log law with the Kármán constant κ = 0.4. The black dashed lines in figure 2(b)
indicate the linear law with an amplitude of 0.18 as well as the trigonometric function
A sin(2πf (x+2 − 180)) with f = 1/169.7 and A = 0.17. As shown in figure 2, ST30 and
ST30S have the same mean velocity profile. It will also be shown in § 3.1 that the
second-order structure functions of the two cases are also nearly identical. Since the
streamwise size of ST60S increases by the same ratio of Roτ compared with ST30S,
ST60S can at least provide reliable basic statistics. As shown in figure 2(a), rotation does
not affect the linear law of 〈U1〉+ in the viscous sublayer. In the log-law layer the profile of
〈U1〉+ is still logarithmic, while the amplitudes are suppressed by rotation. In figure 2(b)
the spanwise mean velocity 〈U3〉+ is induced by rotation. In the bulk region, 〈U3〉+ is
reversed and has a trigonometric profile, which is the inviscid inertial wave solution of
streamwise-rotating channel turbulence (Yang et al. 2010). Furthermore, 〈U3〉+ in the
viscous sublayer has a linear profile, which is also confirmed in the inset of figure 2(b).
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Figure 3. Budget balance of the TKE: (a) ST00, (b) ST30.

Up to rotation number Roτ = 30, the stronger the rotation is, the faster 〈U3〉+ increases.
However, the tendency is reversed as Roτ becomes higher. Similar results have also been
found by Yang et al. (2020a).

The budget equation of the TKE can be written as

− 〈u1u2〉 d〈U1〉
dx2

− 〈u2u3〉 d〈U3〉
dx2︸ ︷︷ ︸

Π

− 1
2

d
dx2
〈uiuiu2〉︸ ︷︷ ︸

T

+ ν

2
d2

dx2
2
〈uiui〉︸ ︷︷ ︸

D

− ν

〈
∂ui

∂xj

∂ui

∂xj

〉
︸ ︷︷ ︸

−E

− 1
ρ

d
dx2
〈pRu2〉︸ ︷︷ ︸

PR

− 1
ρ

d
dx2
〈pTu2〉︸ ︷︷ ︸

PT

= 0, (2.3)

where Π is the production and represents the interaction between the mean and fluctuating
fields, T is the turbulent convection, D is the viscous diffusion, E is the pseudo-dissipation,
and PR and PT are the pressure–velocity correlation terms related to the rotation effects
and turbulent convection, respectively. The pressure components pR and pT are obtained
through pressure decomposition (Yang et al. 2018; Hu, Li & Yu 2022). In the TKE budget
equation, rotation modifies the production by inducing non-zero spanwise mean velocity
〈U3〉.

The TKE budget balance is given in figure 3. The viscous diffusion D and
pseudo-dissipation E near the wall (x+2 � 1) are intensified by rotation. According to the
definition of D (= νd2〈uiui〉/dx2

2/2) and the distribution of the Reynolds stresses given
by Yang & Wang (2018), the intensified viscous effects near the wall can be attributed to
the strong spanwise TKE 〈u3u3〉 induced by rotation. Additionally, as rotation becomes
stronger, the E above the buffer layer (x+2 � 10) decreases, while the production Π

is less affected. This could be related to the reduced dissipation induced by rotation
in homogeneous turbulence (Mininni, Alexakis & Pouquet 2009). In contrast to the
pseudo-dissipation E, the turbulent convection T and viscous diffusion D are strengthened
by rotation. For the turbulent convection T , with rotation becoming stronger, the flux
toward the wall decreases, while that toward the channel centre increases. The more

972 A14-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

69
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.691


Multiscale dynamics in streamwise-rotating channel flows

intensive flux toward the channel centre is consistent with the stronger TKE at this location
observed by Yang & Wang (2018). For viscous diffusion D, larger fluxes lead to stronger
TKE near the wall, especially 〈u3u3〉. In turn, the viscous effects are strengthened by
〈u3u3〉, which has been discussed above. The pressure terms PR and PT are negligible
here, but they mainly redistribute energy among different TKE components (Yang et al.
2020b).

3. Multiscale analysis of the streamwise-rotating channel

The above results are about single-point statistics. However, turbulence is a multiscale
process. In this section we introduce the effects of scales through the scale energy and its
budget balance.

3.1. Scale energy
The velocity increment with centre X and separation r is written as

δui(X , r) = ui(x)− ui(x′), (3.1)

where x = X + 1
2 r and x′ = X − 1

2 r. For convenience, let ui and p denote the flow field
variables at x and u′i and p′ denote the corresponding variables at x′ hereafter. The scale
energy is then written as

〈δu2〉 = 〈δu2〉(X2, r) = 〈δui(X , r)δui(X , r)〉. (3.2)

This paper mainly focuses on the interscale transfers in the streamwise direction, and only
the separations r with r2 = 0 are considered here. Since 〈δu2〉 = 2〈uiui〉 − 2〈uiu′i〉, at a
given scale r = (r2

1 + r2
3)

1/2, the direction with the minimum scale energy min{〈δu2〉} has
the maximum two-point correlation max{〈uiu′i〉}, indicating the average inclination angle
of vortices at this scale r.

The scale energy is shown in figure 4, where panel (a) gives the results with respect to
r+1 in the viscous sublayer, and panels (b) and (c) give the results with respect to r+1 and
r+3 in the log-law layer, respectively. Cases ST30S and ST30 have almost the same results.
As shown in figure 4(a), in the viscous sublayer, with stronger rotation rates, the scale
energy becomes larger. In addition, as rotation intensifies, the scale energy has a narrower
streamwise scale range, which indicates that rotation shortens the streamwise structures
in the viscous sublayer. In the log-law layer the production and the pseudo-dissipation
approximately balance each other (Marati et al. 2004). For scales smaller than the detached
scale (r+ � x+2 ), the effects of the wall diminish, and the turbulence here is approximately
locally isotropic in non-rotating channel turbulence (Casciola et al. 2005; Cimarelli
et al. 2015). Similarly, the transfers in the log-law layer of streamwise-rotating channel
turbulence are expected to be related to those in homogeneous rotating turbulence. As
shown in figure 4(b), in the log-law layer, rotation increases the slope of the scale energy
with respect to r+1 and strongly elongates the streamwise vortices. Roughly speaking, in
the log-law layer, as rotation becomes stronger, the slopes near r+1 ∼ 50 change from
r+2/3

1 to r+1 . The two slopes are consistent with the energy spectra k−5/3 and k−2. The
latter scaling law (r+1 and k−2) has been confirmed by previous studies on homogeneous
rotating turbulence (Yeung & Zhou 1998; Smith & Waleffe 1999; Mininni et al. 2009).
As shown in figure 4(c), rotation has a negligible effect on the behaviour of the scale
energy for spanwise separations, consistent with the results of Yang & Wang (2018).

972 A14-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

69
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.691


R. Hu, X. Li and C. Yu

101

10–1

100

101

102 103

r1
+

104 101

ST00

ST30

ST07

ST30S
ST07R
ST60S

ST15

10–1

100

101

102 103

r1
+

104 101
10–1

100

101

102 103

r1
+

r1
+

r1
+2/3

r1
+

r1
+2/3

r1
+

r1
+2/3

104

(a) (b) (c)
〈δu

2
(r

1
, 
r 3

 =
 0

)〉+
/2

〈δu
2
(r

1
 =

 0
, 
r 3

)〉+
/2

Figure 4. Scale energy profiles: (a) 〈δu2(r1, r3 = 0)〉+/2 in the viscous sublayer (x+2 = 3.4 for ST07R and
x+2 = 3.5 for other cases), (b) 〈δu2(r1, r3 = 0)〉+/2 in the log-law layer (x+2 = 81.6 for ST07R and x+2 = 80.0
for other cases), (c) 〈δu2(r1 = 0, r3)〉+/2 in the log-law layer.
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Figure 5. Scale energy 〈δu2〉+/2 of ST30 on the r+1 − r+3 plane. (a) Large-scale distribution in the viscous
sublayer (x+2 = 3.5). (b) Small-scale distribution in the viscous sublayer. (c) Small-scale distribution in the
log-law layer (x+2 = 80.0). The green lines represent the directions of the coherent structures at certain scales.
The green labels and blue lines are the fitting results of the green lines.

This could be attributed to the fact that the wall constrains the development of wall-normal
and spanwise scales. Without rotation, the maximum of the scale energy corresponds to the
spanwise scale r+3 = 117.8. When rotation is introduced, this spanwise scale is modified
to r+3 ≈ 200 and is insensitive to the rotation rates. The comparison of ST07R and ST07
gives the effects of the Reynolds numbers. In the viscous sublayer and the log-law layer,
the distribution is not obviously modified. However, the amplitudes of ST07R are slightly
larger, especially for the results in the log-law layer.

Figure 5 shows the scale energy in the r1 − r3 plane in the viscous sublayer and
log-law layer. The green lines are obtained from a series of (r1, r3) with min{〈δu2〉}
for every ring (r2

1 + r2
3 = const.). As indicated by the relation between the scale energy

and the two-point correlation, at the scale r = (r2
1 + r2

3)
1/2, the angle tan−1{r1/r3} with

min{〈δu2〉} represents the direction of the vortices. Then, the green lines are fitted through
the nonlinear least squares method with R2 > 0.8 to obtain the inclination angles θ ,
which are shown by the green labels and blue lines. As shown in figures 5(a) and 5(b),
in the viscous sublayer of ST30, small-scale structures (r+1 � 500) form a strong angle
with the rotation axis (up to 16◦), while large-scale structures have a much smaller angle
(approximately 3◦). The threshold between small- and large-scale structures is determined
to obtain reliable fitting results (R2 > 0.8). The comparison between the results in the
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Figure 6. Inclination angles θ obtained based on the scale energy in different layers. (a) Small-scale
inclination angles. (b) Large-scale inclination angles.

viscous sublayer (figure 5b) and those in the log-law layer (figure 5c) shows that energetic
motions are distributed over a wider scale range in the log-law layer. In addition, as shown
by the green lines, even if the small-scale inclination angles in the two layers are close
to each other, the thresholds defined by strong inclination angles are far smaller in the
log-law layer. The thresholds are r+1 = 235.6 and r+3 = 49.0 in the viscous sublayer, and
they are r+1 = 141.4 and r+3 = 23.6 in the log-law layer. The three components of 〈δu2〉
have similar small-scale distributions, but 〈δu2

2〉 has a smaller amplitude and no obvious
large-scale motion, which is not shown here for simplification.

The details about the inclination angles θ are displayed in figure 6. From the wall
to the channel centre, the inclination angle θ decreases in most cases. At the channel
centre, θ is exactly zero due to the antisymmetry in the wall-normal direction. Moreover,
consistent with the observation of Dai et al. (2019), as Roτ becomes larger, the inclination
angle of large-scale structures initially increases until Roτ = 7 and then decreases
thereafter. When Roτ = 60, there is no apparent inclination angle (θ ≈ 1◦). Furthermore,
as the rotation becomes stronger, the discrepancy between small-scale and large-scale
structures is intensified. The most remarkable discrepancy occurs in the viscous sublayer
of ST60S: θ at small scales is 19.0◦, while at large scales is 1.1◦. The multiscale inclined
structures will be further quantitatively discussed in § 4.

3.2. Basic results of the GKE
The budget equation of the scale energy, i.e. the GKE, can be written as (Marati et al.
2004)

− 1
2

∂

∂rj
〈δu2δuj〉︸ ︷︷ ︸

TSS

− 1
2

∂

∂X2
〈δu2u∗2〉︸ ︷︷ ︸

TSP

− 〈δu1δu2〉
〈
∂U1

∂x2

〉∗
−〈δu2δu3〉

〈
∂U3

∂x2

〉∗
︸ ︷︷ ︸

ΠS

− 1
ρ

∂

∂X2
〈δu2δpR〉︸ ︷︷ ︸

PS
R

− 1
ρ

∂

∂X2
〈δu2δpT〉︸ ︷︷ ︸

PS
T

+ ν
∂2

∂rj∂rj
〈δu2〉

︸ ︷︷ ︸
DSS
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Figure 7. Budget balance of the GKE in the viscous sublayer (x+2 = 3.5). The grey dashed lines represent the
breakpoint to show the origin r+1 = 0 in logarithmic coordinates. Results are shown for (a) ST00 and (b) ST30.

+ ν

4
∂2

∂X2
2
〈δu2〉

︸ ︷︷ ︸
DSP

− 2〈ε∗〉
︸ ︷︷ ︸
−ES

= 0, (3.3)

where TSS and TSP are the turbulent convections in scale and spatial space, ΠS is the
production, PS

R and PS
T are the pressure transfers induced by rotation and convection, DSS

and DSP are the interscale and spatial viscous diffusions, ES is the pseudo-dissipation,
ε = ν(∂ui/∂xj)(∂ui/∂xj) and ‘∗’ represents the average of the values at x and x′.

For multiscale analyses, there are three main methods: spectral, two-point correlation
and second-order structure function approaches. The spectral method is the Fourier
transform of two-point correlations (Pope 2000). The relations between the second-order
structure functions and the two-point correlations could be of interest and are given
in Appendix A. These relations also have important practical applications in numerical
postprocessing with high precision. In r space, since the field is not periodic or infinitely
smooth, the partial derivatives ∂/∂r1 and ∂/∂r3 cannot be directly calculated by the Fourier
transform. To overcome this difficulty, utilizing the relations between the second-order
structure functions and the two-point correlations, the partial derivatives ∂/∂ri can be
expanded in terms of ∂/∂xi and ∂/∂x′i. With the relations in Appendix A, all terms of
the GKE can be written as two-point correlations. Then, the derivatives can be solved by
the Fourier transform. In addition, when r→∞, the scale energy will be reduced to four
times the TKE, and the GKE will be reduced to the TKE budget equation (Marati et al.
2004; Hu et al. 2022). As shown in figure 4(c), the scale energy in the spanwise direction
is almost unaffected by rotation. Therefore, the results with r2 = r3 = 0 are the focus of
this section.

The results for ST00 and ST30 in the viscous sublayer are given in figures 7(a) and 7(b),
respectively. The main results are shown in logarithmic coordinates, and a breakpoint is
inserted at the beginning of the abscissa to display the results at r+1 = 0.

In terms of the reliability of postprocessing, the sum of all terms is almost zero. In
addition, when r+1 = 0, the viscous diffusion DSS and the pseudo-dissipation ES balance
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each other, while other terms are exactly zero. Specifically, as deduced by the relation
(A7), when r+1 = 0, DSS and ES are two times the pseudo-dissipation E in the TKE budget
equation,

DSS(r1 = 0, x2) = ES(r1 = 0, x2) = 2ν

〈
∂ui

∂xj

∂ui

∂xj

〉
= 2E(x2), (3.4)

which is verified in figure 7. These observations verify our postprocessing approach that
expands the GKE in terms of the two-point correlations in Appendix A.

As shown in figure 7(a), in the viscous sublayer of ST00, except for −ES < 0 and PR ≈
0, all terms are positive. The scale energy is transferred toward small scales or toward
the wall by these positive terms and then dissipated by ES. Specifically, there are four
main effects in the viscous sublayer: the production ΠS, the spatial and interscale viscous
transfers (DSP and DSS), and the pseudo-dissipation ES. However, as shown by the TKE
budget balance in figure 3, closer to the wall, ΠS is negligible compared with the viscous
effects. Among the three viscous effects, DSP is less important, which means that the
dynamics in the viscous sublayer is spatially local (Marati et al. 2004). In addition, DSS

and DSP become the same when r1 →∞.
The results for ST30 are shown in figure 7(b). In ST30, ΠS is larger than that in

ST00. The combination of the GKE results in figure 7 and the TKE budget balance in
figure 3 suggests that ΠS is distributed closer to the wall in ST30 than in ST00. The
rotation-induced pressure transfer PS

R is positive and is an additional direct transfer toward
the wall. Furthermore, except for ΠS, PS

R and ES, the terms are suppressed by rotation.
This means that rotation strengthens the near-wall turbulence mainly by directly producing
more energy (ΠS) and by the spatial pressure transfer induced by rotation (PS

R), while other
transfers between the viscous layer and the buffer layer are reduced. In fact, as shown by
the TKE budget balance in figure 3, in the lower viscous layer, rotation makes the viscous
effects stronger. This is mainly related to the stronger spanwise TKE 〈u3u3〉. For the scale
distribution, ΠS is distributed among r+1 ∈ (0, 103) in ST00 and among r+1 ∈ (0, 102) in
ST30. This is consistent with the scale energy in figure 4(a), while the discrepancy is more
apparent for ΠS. In other words, rotation shortens the streamwise structures in the viscous
sublayer. The results are non-trivial because rotation generally induces long streamwise
coherent structures, such as TGL vortices (Yang & Wang 2018). The shorter streamwise
structures are partly caused by corresponding larger inclination angles at small scales. As
shown in figure 5(a), the inclination angle of small-scale structures in the viscous sublayer
is 16◦. If only the slice with r+3 = 0 is considered, then the streamwise scales become
smaller.

In the buffer layer, as shown in figure 8(a), at large scales (r+1 > 103), only ΠS is
positive. Therefore, energy is produced by ΠS. Then, energy is transferred to other scales
by interscale transfers (DSS and TSS) and to other locations (up to the bulk of the flow
and down to the viscous sublayer) by TSP and DSP or dissipated by ES. In addition, the
interscale transfers TSS and DSS are both positive at small scales but negative at large
scales. On the one hand, energy is forward cascaded to small scales. On the other hand,
if integrated in the r1 direction, the fluxes are negative at large scales, which represents
an inverse cascade. The dual cascades to smaller and larger scales are the reflection
of breakdown, regeneration and coalescence of streamwise vortices (Hamilton, Kim &
Waleffe 1995). Furthermore, the interscale transfers are important at small scales, while
the spatial effects are mainly valid at large scales. The pressure transfers (PS

R and PS
T ) are

negligible and mainly redistribute the scale energy between different components (Yang
& Wang 2018).
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Figure 8. Budget balance of the GKE in the buffer layer (x+2 = 10.5). The grey dashed lines represent the
breakpoint to show the origin r+1 = 0 in logarithmic coordinates. Results are shown for (a) ST00 and (b) ST30.

The comparison of figures 8(a) and 8(b) shows that when strong rotation is introduced,
at large scales, ΠS is not affected, while ES in the buffer layer is strongly reduced. At small
scales (r+1 � 102), since ES balances with the interscale transfers (TSS and DSS), the local
interscale transfers are also reduced by rotation. At large scales (r+1 � 102), the interscale
and spatial turbulent convections (TSS and TSP) are both strengthened by rotation. These
observations imply that the forward cascades to small scales in the buffer layer are reduced
by rotation, and instead, the scale energy is mainly spatially transported in the wall-normal
direction or inversely cascaded. Additionally, as occurs in the viscous sublayer, the scale
distribution of the production is also restricted by rotation in the buffer layer, indicating
the presence of strongly inclined small-scale structures here.

In the log-law layer, as shown in figure 9(a), when there is no rotation, ΠS is locally
balanced with ES at large scales. The spatial and interscale transfers at large scales are
negligible, and the log-law layer does not obtain or lose energy. In fact, energy is produced
in the buffer layer and then transferred across the log-law layer toward the channel centre
(Marati et al. 2004). Furthermore, the comparison of figure 8(a) and figure 9(a) shows
that if normalized by ΠS, the interscale transfers (DSS and TSS) at small scales in the
log-law layer are relatively more important than those in the buffer layer. The relatively
weak spatial transfers and stronger interscale transfers mean that in the log-law layer the
scale energy is locally cascaded to small-scale structures.

When rotation is introduced, as shown in figure 9(b), the local balance of ΠS and ES

is destroyed. Remarkable spatial energy transfers (TSP and PS
T ) are introduced, originating

from the elongated large-scale streamwise vortices, according to the Reynolds stresses and
their budget balance given by Yang & Wang (2018). Additionally, similar to the phenomena
in the buffer layer, in the log-law layer the pseudo-dissipation (ES) and the interscale
transfers (DSS and TSS) at small scales are also reduced by rotation. In fact, as shown in
figure 4(b), in the log-law layer the scale energy at small scales is also reduced by rotation.
In terms of the scale distribution, different from the results in the former two layers, in
the log-law layer the scale distribution of all terms is extended to a much wider range by
rotation. This means that rotation extends the streamwise structures in the log-law layer but
shortens those in the viscous sublayer and the buffer layer, which could also be associated
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Figure 9. Budget balance of the GKE in the log-law layer (x+2 = 81.6 for ST07R and x+2 = 80.0 for other
cases). The grey dashed lines represent the breakpoint to show the origin r+1 = 0 in logarithmic coordinates.
Results are shown for (a) ST00, (b) ST30, (c) ST07, (d) ST07R.

with the smaller inclination angle and narrower small-scale range in the log-law layer, as
shown by the scale energy in figure 5(b,c).

Cases ST07 and ST07R are compared here to examine the effects of the Reynolds
numbers. Figure 9(c,d) shows that the difference in the GKE results is mainly concentrated
in the log-law layer, while the other layers are not shown in this paper because they
are less affected by the Reynolds numbers. The comparison of figure 9(c,d) shows that
at large scales, the spatial and interscale turbulent convections (TSP and TSS) are far
smaller under larger Reynolds numbers. For these turbulent convections, smaller rotation
numbers and larger Reynolds numbers have similar effects, as shown by the comparison
of figure 9(a,c,d). In addition, ΠS and ES are larger with a higher Reynolds number, as
the turbulence is strengthened. Strictly speaking, the layer x+2 ≈ 80 with Reτ = 180 does
not fully scale in viscous units and is located at the junction between the inner and outer
layers. If larger Reynolds numbers are considered, then these results may be invariant with
respect to the Reynolds number, similar to those in the viscous sublayer and the buffer
layer.
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In conclusion, rotation extracts more energy from the buffer layer to other layers. In
the viscous sublayer the turbulence intensity is mainly strengthened by the movement
of the production peak and the intensive spatial viscous diffusion. In the log-law layer
the turbulence is mainly strengthened by the spatial turbulent convection, the inhibited
forward cascades and the thus weaker pseudo-dissipation. In fact, in homogeneous rotating
turbulence (Mininni et al. 2009), forward cascade inhibition has also been confirmed,
attributed to the decay of non-resonant interactions. In streamwise-rotating channel
turbulence the structures in the log-low layer are strongly elongated by rotation. In contrast,
those structures under the buffer layer are shortened. This could be attributed to the
strongly inclined structures near the wall, which will be investigated in § 4. Furthermore,
increasing Reynolds numbers result in weaker spatial turbulent convection and stronger
interscale transfers, which is opposite to the rotation effects. This is associated with
the relative importance between inertial motions and the rotation effects. Similarly, in
homogeneous rotating turbulence, under rapid rotation (Ω →∞), the nonlinear turbulent
convection is negligible (Davidson 2013).

4. Inclined structures and sustaining mechanisms

In § 3.1 it has been found that the inclination angles of large- and small-scale structures
are completely different, and the difference is more remarkable as rotation becomes
stronger. In this section we use the angle based on the velocity vector and the filtering
approach to identify these inclined structures more quantitatively. Then, based on the
related budget balance of the Reynolds stresses and AGKE for the second-order structure
functions, we identify the key sustaining mechanisms for small-scale inclined structures,
with further physical explanations provided through the hairpin vortex model. Finally, the
scale discrepancy will also be discussed in detail.

4.1. Identification of the inclined structures
To confirm these observations about the inclined structures, figure 10 shows the vortex
structures under the log-law layer (x+2 < 90) for the cases (a) ST00, (b) ST07 and (c) ST30.
The structures are coloured by the distance from the wall and are shown with Q > 500,
where Q = [2|∇ × u|2 − |∇u+ (∇u)T |2]/8. The white solid lines in (b) and (c) are given
for reference of the inclination angles. As shown, the structures of ST07 and ST30 have
larger lateral sizes than those of ST00, in agreement with the observation in figure 4(c).
Furthermore, in figure 10(a) the structures of ST00 are fully aligned with the streamwise
direction in all layers, where no rotation is introduced. The structures of ST07 are shown
in figure 10(b). The structures have a small inclination angle (8.0◦). Figure 10(c) gives
the results for ST30. Most small-scale structures (Δx+1 < 500) have an angle of 16.0◦.
However, the large-scale structures (Δx+1 > 2000) display angles between 2.63◦ and 16.0◦.
In what follows, these structures will be identified by a more quantitative method.

For channel turbulence, researchers (Kim & Moin 1986; Jiménez 2011) usually use the
velocity direction to recognize sweeps and ejections. Therefore, the inclination angle can
be defined by the velocity field as

θu = tan−1{u3/u1}. (4.1)
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Figure 10. Flow structures under the log-law layer (x+2 < 90) with Q > 500 for the cases (a) ST00, (b) ST07,
(c) ST30. The structure is coloured by x+2 , with the colour bar on the right of panel (a). The white lines and
labels are given for reference.

To illustrate the scale discrepancy, filtering methods are used to isolate the large- and
small-scale results. The large- and small-scale angles are defined as

θu,L(x) = tan−1

⎧⎪⎪⎨
⎪⎪⎩

∫
GL(r)u3(x− r)dr∫
GL(r)u1(x− r)dr

⎫⎪⎪⎬
⎪⎪⎭ , θu,S(x) = tan−1

⎧⎪⎪⎨
⎪⎪⎩

∫
GS(r)u3(x− r)dr∫
GS(r)u1(x− r)dr

⎫⎪⎪⎬
⎪⎪⎭ ,

(4.2a,b)
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Figure 11. Comparison of the average inclination angles of different scales. (a) Average inclination angle
〈θu〉. (b) Average inclination angle at small scales 〈θu,S〉.

where GL and GS are corresponding filters. To avoid any artificial effects on the vortex
direction, the same filter width is used in the streamwise and spanwise directions. Three
filters and three filter widths are considered in Appendix B. Although affected by filters,
the small-scale results manifest the same tendency. The large-scale results exhibit a similar
distribution to the non-filtered results but are sensitive to the filter width. In our study,
ΔL ∈ [0.1π, 0.4π] and is comparable to the width of two-layer TGL vortices (0.16π). The
TGL vortices have been studied by many researchers (Yang & Wang 2018) and are not
the subject of this paper. In the following analysis, only the small-scale results with the
Gaussian filters ((B1)) of ΔS = 0.025π are presented.

The results are given in figure 11. As shown in figure 11(a), in the low log-law
layer (x+2 ≈ 40 and x2 ≈ ±0.75), as rotation becomes stronger, the average large-scale
inclination angle 〈θu,L〉 decreases. However, in the vicinity of the wall and around
the channel centre, 〈θu,L〉 is roughly unchanged for different cases. This should be
attributed to the local distribution of a large-scale streamwise vortex, which is the limit
of the inclination angle based on the velocity vector. However, the average small-scale
angle 〈θu,S〉 has completely different distributions, as shown in figure 11(b). As rotation
intensifies, 〈θu,S〉 near the wall (x+2 ≈ 18 and x2 ≈ ±0.1) monotonically increases. In
higher layers the 〈θu,S〉 of ST60S is slightly smaller than that of ST30. Generally, this is
consistent with the results shown in figure 6. There are also small differences, such as the
specific values of angles, which can be attributed to their different definitions. Moreover,
as Reτ increases, 〈θu,S〉 generally decreases. There could be two reasons. First, ST07R has
a wider scale range, and the smallest scale is not affected by rotation, which is supported
by the scale energy not shown. The second reason is the thinner boundary layer in ST07R.
There is no inclination angle in homogeneous rotating turbulence. Roughly speaking, the
inclined structures originate from the coupling effects of boundary layers and rotation.
Case ST07R has a thinner boundary layer than ST07 and, thus, has a weaker inclination
angle. This deduction can be verified by the fact that in figure 11 the 〈θu,S〉 of ST07 and that
of ST07R are almost the same under the viscous sublayer but are completely different away
from the wall. Figure 12 shows the probability density function (PDF) of the small-scale
inclination angle θu,S in (a) the buffer layer and (b) the low log-law layer. As rotation
intensifies, the peaks of the PDF move toward a positive value. Furthermore, in the low
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Figure 12. Comparison of the PDF of the small-scale inclination angle θu,S in (a) the buffer layer (x+2 = 10.3
for ST07R and x+2 = 10.5 for other cases) and (b) the low log-law layer (x+2 = 46.6 for all cases).

log-law layer, the peaks have weaker amplitudes than those in the buffer layer, indicating
an isotropic tendency away from the wall.

4.2. Sustaining mechanisms of the inclined structures
After the identification of the inclined structures, the focus is on the sustaining mechanisms
of these structures. Since the distribution of 〈u1u3〉 is similar to that of 〈θu〉, for
simplification, the phenomena are analysed based on the budget balance of 〈u1u3〉 and
the AGKE of 〈δu1δu3〉. For an overview of the mechanisms, the Reynolds stress budget
equation is studied first and is written as

− 〈u2uj〉d〈Ui〉
dx2
− 〈u2ui〉d〈Uj〉

dx2︸ ︷︷ ︸
Πij

+ 2Ω〈ε1imujum + ε1jmuium〉︸ ︷︷ ︸
Cij

− d
dx2
〈uiuju2〉︸ ︷︷ ︸

T ij

− 1
ρ

〈
uj

∂pR

∂xi
+ ui

∂pR

∂xj

〉
︸ ︷︷ ︸

PR,ij

− 1
ρ

〈
uj

∂pT

∂xi
+ ui

∂pT

∂xj

〉
︸ ︷︷ ︸

PT,ij

+ ν
d2

dx2
2
〈uiuj〉︸ ︷︷ ︸

Dij

− 2ν

〈
∂ui

∂xk

∂uj

∂xk

〉
︸ ︷︷ ︸

−E ij

= 0, (4.3)

where Πij is the production, Cij is the Coriolis term, T ij is the turbulent convection,
Dij is the viscous diffusion, E ij is the pseudo-dissipation, and PR,ij and PT,ij are the
pressure–velocity correlation terms related to the rotation effects and turbulent convection,
respectively. Since Cij and PR,ij are both induced by rotation and are strongly cancelled by
each other, the two terms are summed to form a new term Cij,eff (Yang et al. 2020a).

The budget balance for the Reynolds stresses (〈u1u3〉 and 〈u2u3〉) of ST30 is given
in figure 13. The terms in figure 13 have opposite signs to those reported by Yang

972 A14-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

69
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.691


R. Hu, X. Li and C. Yu

–0.15

–0.05

–0.10

0

0.05

0.10

–0.03

–0.02

–0.01

0

0.01

0.02

0.03

10010–1 101 102

x2
+

10010–1 101 102

x2
+

(a) (b)

Π+
ij T +

ij D+
ij

–E+
ij SumP+

T,ijC+
ij,eff

Figure 13. Budget balance of 〈uiuj〉+ for ST30: (a) 〈u1u3〉+, (b) 〈u2u3〉+.

& Wang (2018) due to the different domain ranges evaluated. Specifically, this study
examines the upper domain (x2 ∈ [0, 1]), while Yang & Wang (2018) explored the lower
domain (x2 ∈ [−1, 0]). As shown in figure 13(a), the effective Coriolis term C13,eff
reduces the inclination angle. In contrast, there are two main sources for 〈u1u3〉, i.e. the
convection-induced pressure–velocity correlation term PT,13 and the production Π13. PT,ij
can be simplified as

PT,ij = − 1
ρ

〈
ui

∂pT

∂xj
+ uj

∂pT

∂xi

〉
= − 1

ρ

〈
∂uipT

∂xj
+ ∂ujpT

∂xi

〉
+ 2

ρ
〈pTSij〉, (4.4)

where the strain rate tensor Sij = (∂ui/∂xj + ∂uj/∂xi)/2. Here, PT,13 = 2〈pTS13〉/ρ and
could be related to the strain rate tensor. To confirm the effect of the strain, the principal
directions of the strain rate tensors (〈θSij〉 and 〈θSij,S〉) are calculated by the eigenvector
with max{|λi|}, where λi is the eigenvalue. The principal directions of the strain rate
tensors are given in figure 14. As shown, the tendency of 〈θSij,S〉 is similar to that of 〈θu,S〉
in figure 11. On the one hand, the strain tries to induce these inclined structures via PT,13.
On the other hand, the strain also affects the dissipation, which reduces the inclination
angle. Another more important source is the production Π13, which can be decomposed
into two components (Π13,1 and Π13,2), i.e.,

Π13 = −〈u2u3〉d〈U1〉
dx2︸ ︷︷ ︸

Π13,1

−〈u1u2〉d〈U3〉
dx2︸ ︷︷ ︸

Π13,2

. (4.5)

Figure 15 gives (a) the production and (b,c) its decomposition. The production Π13 is
the main reason for the inclination angle. It is positive in the buffer layer but negative in
higher layers. As rotation intensifies, the positive peak moves towards the wall and has
a larger value. The decomposition in figure 15(b,c) shows that Π13,1 is responsible for
the positive peaks, especially for strongly rotating cases (ST30 and ST60S). Here, Π13,1
originates from the Reynolds stress 〈u2u3〉. As shown in figure 13(b), the effective Coriolis
term C23,eff is the only source for positive 〈u2u3〉. In other words, C23,eff induces positive
〈u2u3〉, and then, under the strain induced by 〈U1〉, 〈u2u3〉 further leads to these inclined
structures. Notably, Yang et al. (2020a) found that 〈u2u3〉 constrains itself from increasing
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Figure 14. Comparison of the average inclination angles given by the principal directions of the strain rate
tensor. (a) Average inclination angle 〈θSij 〉. (b) Average inclination angle at small scales 〈θSij,S〉.
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Figure 15. Production decomposition for the budget balance of 〈u1u3〉+. Results are shown for (a) Π+13,
(b) Π+13,1, (c) Π+13,2.

infinitely. From Π13,1, it can be inferred that with stronger rotation, the inclination angle
also cannot infinitely increase, as confirmed by the 〈θu,S〉 of ST30 and ST60S in figure 11.

To illustrate how these strongly inclined small-scale structures are sustained under
rotation, a simple hairpin vortex model is proposed here. To be consistent with the previous
analysis, the upper channel domain (x2 ∈ [0, 1]) is considered. It is in a left-handed
coordinate system because a transform of x2 ← 1− x2 is used when the upper domain
is discussed. For a clearer illustration, the three main effects can be summarized as

Π13,1 =
〈
u3

(
−u2

d〈U1〉
dx2

)〉
= 〈u3FΠ1〉 for

〈
u3

∂u1

∂t

〉
,

C23 ≈ 〈u3(2Ωu3)〉 = 〈u3FC2〉 for
〈
u3

∂u2

∂t

〉
,

C13 = 〈u1(−2Ωu2)〉 = 〈u1FC3〉 for
〈
u1

∂u3

∂t

〉
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.6)

where −2Ω〈u2u2〉 in C23 is negligible compared with 2Ω〈u3u3〉. In (4.6), FΠ1, FC2, and
FC3 are the corresponding forces of the three key terms Π13,1, C23 and C13, respectively.
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FΠ1
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(a) (b)

Figure 16. Three forces in the (a) ejection and (b) sweep of a hairpin vortex. The upper half-domain is given
to be consistent with the above analysis, and thus, the left-handed system is used. The black arrows give the
main region of ejections and sweeps, and the dark blue arrows show the force directions.

The forces directly affect the momentum and, thus, the Reynolds stresses 〈u1u3〉 and
〈u2u3〉. The analysis of the three forces on a vortex could give some intuitions about
the mechanisms shown by the Reynolds stress budget balance. In figure 16 two events
of a hairpin vortex are considered: (a) ejections with {u1 < 0, u2 < 0, u3 < 0} and (b)
sweeps with {u1 > 0, u2 > 0, u3 > 0}. As shown by the black arrows, fluid ejects mainly
in the inboard of the vortex and sweeps mainly in the outboard region (Adrian 2007). The
assumption of u1 and u2 is based on the ejection and sweep models of the hairpin vortex
(Jiménez 2011). The models are still effective in streamwise-rotating channel turbulence
because the distribution of 〈u1u2〉 is almost unaffected by the streamwise rotation (Yang &
Wang 2018), and hairpin vortexes are also observed in ST07 in figure 10. Notably, contrary
to the classical hairpin vortex model, since the upper domain is considered here, u2 < 0
for the ejections and u2 > 0 for the sweeps. In addition, due to 〈θu,S〉 in figure 11, u3 is
selected to have the same sign as u1. Based on the hairpin vortex model in figure 16, the
effects of the forces on the ejection and sweep are illustrated separately.

(i) As shown in figure 16(a), in the ejection, the Coriolis force FC3 tries to induce a
positive spanwise velocity u3, which is opposite to the assumption u3 < 0. Since
u1 < 0, u1FC3 < 0. This is consistent with the negative term C13,eff in figure 13(a)
and is the direct mechanism of C13,eff reducing the positive inclination angle. In
contrast, since u3 < 0, FC2 tries to induce negative u2, consistent with the ejection
assumption of u2 < 0. Then, as u2 < 0, FΠ1 related to Π13,1 tries to induce negative
u1, and thus, u3FΠ1 > 0. The effects of the forces FC2 and FΠ1 are consistent with
the budget balance of 〈u2u3〉 and 〈u1u3〉. This mechanism is responsible for the
small-scale inclined structures near the wall. Here FC2 strengthens the wall-normal
velocity and FΠ1, which further induces the inclination structures.

(ii) As shown in figure 16(b), in the sweep, FC3 leads to a negative spanwise velocity
u3 and u1FC3 < 0, which reduces the positive inclination angle; FC2 tries to induce
positive u2; FΠ1 intensifies the positive u1, and thus, u3FΠ1 > 0. The effects of the
three forces are also consistent with the budget balance of 〈u2u3〉 and 〈u1u3〉.

Through this hairpin vortex model, the physical processes hidden under the Reynolds
stress budget balance are clearly shown. In conclusion, there are two main mechanisms.
First, C13 related to FC3 directly reduces the inclination angle. In contrast, C23 related to
FC2 indirectly induces a positive 〈u2u3〉, which then results in inclination structures under
the mean shear stress induced by Π13,1.

To further confirm the findings, the scale decompositions are considered using the
AGKE, which was deduced by Gatti et al. (2020) for inhomogeneous turbulence.
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In channel turbulence with streamwise rotation, the AGKE is written as

0 = − 〈δujδu2〉
〈
∂Ui

∂X2

〉∗
−〈δuiδu2〉

〈
∂Uj

∂X2

〉∗
︸ ︷︷ ︸

ΠS
ij

+ 2Ω(ε1im〈δujδum〉 + ε1jm〈δuiδum〉)︸ ︷︷ ︸
CS

ij

− ∂

∂X2
〈δuiδuju∗2〉︸ ︷︷ ︸
T SP

ij

− ∂

∂rk
〈δuiδujδuk〉︸ ︷︷ ︸
T SS

ij

− 1
ρ

〈
δuj

∂δpR

∂Xi
+ δui

∂δpR

∂Xj

〉
︸ ︷︷ ︸

PS
R,ij

− 1
ρ

〈
δuj

∂δpT

∂Xi
+ δui

∂δpT

∂Xj

〉
︸ ︷︷ ︸

PS
T,ij

+ ν

2
∂2

∂X2
2
〈δuiδuj〉︸ ︷︷ ︸

DSP
ij

+ 2ν
∂2

∂rk∂rk
〈δuiδuj〉︸ ︷︷ ︸

DSS
ij

− 4〈εij〉∗︸ ︷︷ ︸
−ES

ij

, (4.7)

where T SS
ij and T SP

ij are the turbulent convections in scale and spatial space, ΠS
ij is the

production, PS
ij,R and PS

ij,T are the pressure–velocity correlation terms induced by rotation
and convection, DSS

ij and DSP
ij are the interscale and spatial viscous diffusion, ES

ij is the
pseudo-dissipation and εij = ν(∂ui/∂xk)(∂uj/∂xk). Figure 17 shows the AGKE of 〈δu1δu3〉
for ST30 in the buffer layer (x+2 = 10.5). The main conclusion is consistent with that
obtained based on the budget balance of 〈u1u3〉. Therefore, it is reliable to use the
budget balance of 〈u1u3〉 to study the mechanisms for small-scale inclined structures.
Furthermore, at small scales, there are still positive interscale turbulent convection T SS

13
and interscale viscous diffusion DSS

13, similar to the GKE results in figure 8. These strongly
inclined structures are produced around r+1 ≈ 100 and then induce inclined structures at
smaller scales via forward cascades.

Finally, the mechanisms underlying the discrepancy between small- and large-scale
inclination angles observed based on 〈θu〉 and 〈θu,S〉 are investigated. As shown in
figure 11, in the low log-law layer (x+2 = 46.6), as Roτ increases from 0 to 30, the structures
of overall scale have weaker inclination angles, but small-scale structures have stronger
angles. According to the production decomposition in figure 15, the decaying angles for
large-scale structures could be mainly attributed to the negative Π13,2 in the log-law layer.
According to the profile in figure 2 and the Reynolds stresses given by Yang & Wang
(2018), in the boundary layer, 〈u1u2〉 does not change its sign, while the behaviour is
the opposite for ∂〈U3〉/∂x2. Therefore, the mean spanwise velocity gradients could be
responsible for the decaying angles of large-scale structures with increasing rotation rates.
To further confirm the deduction, the production in the AGKE is also decomposed as
follows:

ΠS
13 = −〈δu3δu2〉

〈
∂U1

∂X2

〉∗
︸ ︷︷ ︸

ΠS
13,1

−〈δu1δu2〉
〈
∂U3

∂X2

〉∗
︸ ︷︷ ︸

ΠS
13,2

. (4.8)

Figure 18 shows the decomposition for ST30 at x+2 = 46.6, where panel (a) gives the
overall production ΠS+

13 and panels (b,c) give the decomposition. As shown in figure 18(a),
for ST30 and ST60S with strong scale discrepancies, ΠS

13 is positive at small scales
but negative at large scales. For ST07 with no obvious discrepancy, the production is
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Figure 17. The AGKE of 〈δu1δu3〉+ for ST30 in the buffer layer (x+2 = 10.5).
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Figure 18. Decomposition of the production in the AGKE of 〈δu1δu3〉+ in the low log-law layer (x+2 = 46.6).
Results are shown for (a) ΠS+

13 , (b) ΠS+
13,1, (c) ΠS+

13,2.

completely negative. As shown by the decomposition in figure 18(b,c), ΠS+
13,1 is always

positive, and the behaviour is the opposite for ΠS+
13,2. Therefore, the scale discrepancy

arises mainly because large-scale inclined structures are more sensitive to the mean
spanwise velocity gradients.

5. Conclusion

Streamwise-rotating channel turbulence is a typical multiscale and inhomogeneous flow.
In this paper, based on basic turbulence statistics, second-order structure functions and
their budget balance, we have investigated the multiscale dynamics in streamwise-rotating
channel turbulence.

Seven DNS are taken into consideration. The Reynolds number is 180 or 395, and
the rotation number ranges from 0 to 60. Through the TKE budget balance, we find
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that under rotation, the near-wall turbulence is strengthened, which is mainly related
to the spanwise TKE 〈u3u3〉. In addition, the pseudo-dissipation above the buffer layer
is reduced by rotation. To further investigate the spatial and interscale dynamics, the
GKE is introduced. First, we study the distribution of the scale energy and find that
small- and large-scale structures have different inclination angles in rapidly rotating cases.
Additionally, we find that rotation shortens the streamwise structures in the viscous
sublayer and buffer layer, which could be attributed to the strongly inclined small-scale
structures near the wall. In contrast, the streamwise structures above the buffer layer
are elongated by rotation. Then, we analyse the transfer of the scale energy utilizing
the GKE. We discover that rotation strengthens the turbulence intensity in the viscous
sublayer, mainly through the variation of the production distribution and the spatial viscous
diffusion. In the buffer layer the pseudo-dissipation and interscale transfers at small scales
are suppressed by rotation. At large scales, the turbulent interscale and spatial transfers
are both strengthened. In the log-law layer, rotation destroys the spatial local balance and
suppresses the pseudo-dissipation. The phenomenon of the reduced pseudo-dissipation is
related to the suppressed forward cascades induced by rotation and has also been found in
homogeneous rotating turbulence. We also find the opposite effects between the Reynolds
and rotation numbers on the interscale transfers.

Finally, based on the filtered velocity field, we quantitatively investigate the large- and
small-scale inclined structures. Large- and small-scale structures have different inclination
angles. As rotation intensifies, the difference becomes more remarkable. As Reτ becomes
larger, the inclination angle is generally reduced due to the wider scale range and
the thinner boundary layer. Then, the sustaining mechanisms of inclined structures are
analysed based on the budget balance of the Reynolds stresses and AGKE of 〈δu1δu3〉.
We find that the Coriolis force directly reduces the inclination angle. In contrast, the
pressure–velocity correlation term arises from inclined structures and can be related to
the principal direction of the strain rate tensor. Indirectly, the Coriolis force induces
non-zero 〈u2u3〉, which then produces inclined structures under the mean streamwise
velocity gradients. We then clearly illustrate the direct and indirect effects of the Coriolis
forces through the hairpin vortex model, which provides insight into the physical processes
hidden behind the complex turbulence statistics. The scale discrepancies in the inclined
structures are mainly attributed to the mean spanwise velocity gradients.

In conclusion, through detailed and systematic analyses, we have investigated the
multiscale dynamics in streamwise-rotating channel turbulence. The specific energy
transfer behaviours, new features of the structures and their sustaining mechanisms have
been identified and analysed in this paper. We expect this study to help in exploring the
rotation effects in general wall-bounded turbulent flows.
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Appendix A. Two-point correlations and high-precision post-processing

According to the relationships among the partial derivatives (Hill 2002)

∂

∂xi
= ∂

∂ri
+ 1

2
∂

∂Xi
,

∂

∂x′i
= − ∂

∂ri
+ 1

2
∂

∂Xi
,

∂

∂Xi
= ∂

∂xi
+ ∂

∂x′i
,

∂

∂ri
= 1

2

(
∂

∂xi
− ∂

∂x′i

)
,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (A1)

all the terms of the GKE in (3.3) can be written as follows.
The time derivative term is

1
2

∂〈δu2〉
∂t
= ∂

∂t
〈(uiui)

∗−uiu′i〉. (A2)

The interscale turbulent convection can be written as

−1
2

∂

∂rj
〈δu2δuj〉 = 1

4

[
−

〈
∂

∂xj
uiuiuj

〉
−

〈
u′iu
′
i

∂

∂xj
uj

〉
+ 2

〈
u′i

∂

∂xj
uiuj

〉

+
〈

u′j
∂

∂xj
uiui

〉
− 2

〈
u′iu
′
j

∂

∂xj
ui

〉]

+ 1
4

[
−

〈
∂

∂x′j
u′iu
′
iu
′
j

〉
−

〈
uiui

∂

∂x′j
u′j

〉
+ 2

〈
ui

∂

∂x′j
u′iu
′
j

〉

+
〈

uj
∂

∂x′j
u′iu
′
i

〉
− 2

〈
uiuj

∂

∂x′j
u′i

〉]
, (A3)

where the underline in the subscript represents no tensor contraction, and thus, the
impressible constraint ∂ui/∂xi = 0 cannot be applied.

The production can be written as

−〈δu1δu2〉
〈
∂U1

∂x2

〉∗
−〈δu2δu3〉

〈
∂U3

∂x2

〉∗
= −〈2(u1u2)

∗−(u′1u2 + u1u′2)〉
〈
∂U1

∂x2

〉∗

− 〈2(u2u3)
∗−(u′2u3 + u2u′3)〉

〈
∂U3

∂x2

〉∗
. (A4)

The spatial turbulent convection can be written as

−1
2

∂

∂X2
〈δu2u∗2〉 =

1
4

[
−

〈
∂

∂x2
uiuiu2

〉
−

〈
u′iu
′
i

∂

∂x2
u2

〉
+ 2

〈
u′i

∂

∂x2
uiu2

〉

−
〈
u′2

∂

∂x2
uiui

〉
+ 2

〈
u′iu
′
2

∂

∂x2
ui

〉]

+ 1
4

[
−

〈
∂

∂x′2
u′iu
′
iu
′
2

〉
−

〈
uiui

∂

∂x′2
u′2

〉
+ 2

〈
ui

∂

∂x′2
u′iu
′
2

〉

−
〈
u2

∂

∂x′2
u′iu
′
i

〉
+ 2

〈
uiu2

∂

∂x′2
u′i

〉]
. (A5)
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The spatial rotation-induced pressure transport can be written as

− 1
ρ

∂

∂X2
〈δu2δpR〉 = 1

ρ

[
−

〈
∂

∂x2
u2pR

〉
+

〈
pR′ ∂

∂x2
u2

〉
+

〈
u′2

∂

∂x2
pR

〉]

+ 1
ρ

[
−

〈
∂

∂x′2
u′2pR′

〉
+

〈
pR ∂

∂x′2
u′2

〉
+

〈
u2

∂

∂x′2
pR′

〉]
. (A6)

The spatial convection-induced pressure transport can be written by replacing pR with pT .
The interscale viscous diffusion can be written as

ν
∂2

∂rj∂rj
〈δu2〉 = ν

4

[〈
∂2uiui

∂xj∂xj

〉
− 2

〈
u′i

∂2ui

∂xj∂xj

〉]

+ ν

4

[〈
∂2u′iu

′
i

∂x′j∂x′j

〉
− 2

〈
ui

∂2u′i
∂x′j∂x′j

〉]
+ ν

〈
∂ui

∂xj

∂u′i
∂x′j

〉
. (A7)

The spatial viscous diffusion can be written as

ν

4
∂2

∂X2
2
〈δu2〉 = ν

4

[〈
∂2uiui

∂x2∂x2

〉
− 2

〈
u′i

∂2ui

∂x2∂x2

〉]

+ ν

4

[〈
∂2u′iu

′
i

∂x′2∂x′2

〉
− 2

〈
ui

∂2u′i
∂x′2∂x′2

〉]
− ν

〈
∂ui

∂x2

∂u′i
∂x′2

〉
. (A8)

The pseudo-dissipation is the same.

Appendix B. The effects of filters on the inclined angles

Three filters are considered here, including the Gaussian, box and sharp spectral filters.
The Gaussian filter can be written in the Fourier space as

ĜL(k1, k3) = exp(−(k2
1 + k2

3)Δ
2
L/24),

ĜS(k1, k3) = 1− exp(−(k2
1 + k2

3)Δ
2
S/24),

}
(B1)

where k1 and k3 are streamwise and spanwise wavenumbers, ΔL and ΔS are the filter
widths for corresponding filters.

The box filter can be written in the Fourier space as

ĜL(k1, k3) =
sin

(
1
2

√
(k2

1 + k2
3)ΔL

)
1
2

√
(k2

1 + k2
3)ΔL

,

ĜS(k1, k3) = 1−
sin

(
1
2

√
(k2

1 + k2
3)ΔS

)
1
2

√
(k2

1 + k2
3)ΔS

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B2)

972 A14-25

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

69
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.691


R. Hu, X. Li and C. Yu

〈θ u
,S
〉

〈θ u
,L
〉

Gaussian

–1.0

–10

0

5

10

15

–5

–15

–10

0

5

10

15

–5

–15

–0.5 0.5 1.00 –1.0 –0.5 0.5 1.00

Box Spectral

x2 x2

(b)(a)

Figure 19. The filter effects on (a) 〈θu,L〉 and (b) 〈θu,S〉 of ST30.
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Figure 20. The filter width effects on (a) 〈θu,L〉 and (b) 〈θu,S〉 of ST30. For reference, 〈θu〉 is given in
panel (a).

The sharp spectral filter can be written in the Fourier space as

ĜL(k1, k3) = H
(

π

ΔL
− |

√
(k2

1 + k2
3)|

)
,

ĜS(k1, k3) = H
(
− π

ΔS
+ |

√
(k2

1 + k2
3)|

)
,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (B3)

where H(x) is the Heaviside function.
The effects of filters are shown in figure 19. As shown, the filters have no effect on the

large-scale averaged inclined angle but affect the small-scale averaged inclination angle.
Nonetheless, the small-scale results exhibit the consistent trend regardless of the filters
used.

The effects of the filter widths are shown in figure 20, where ΔL,i = {0.1π, 0.2π, 0.4π},
ΔS,i = {0.05π, 0.025π, 0.0125π} and i = {1, 2, 3}. As shown, 〈θu,L〉 has similar
distributions with 〈θu〉, and is strongly affected by filter widths. In contrast, 〈θu,S〉 is
approximately independent of filter widths and is related to the main subjects of this paper.
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