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ABSTRACT
It is necessary to select appropriate active parameters to ensure both 
the accuracy and computation efficiency before the global analysis of 
chemical kinetic model. This paper proposes a new method for select-
ing the active parameters on the base of the combination of sensitivity 
analysis and linear programming. Compared with the usual methods 
for selecting active parameters, such as the local sensitive analysis, the 
characteristics of the proposed method is preliminary visualization of 
the possible influence of the selected active parameters on the model 
outputs in the process of parameter selection, ensuring the reliability 
of the selected active parameters. Considering the computation effi-
ciency, the number of selected active parameters can be controlled in 
a suitable size through combining with dichotomy or other screening 
techniques. In the study, the pre-exponential factors of the Arrhenius 
equations in the USC-Mech II model were considered as the candidate 
parameters and the uncertainties of the pre-exponential factors were 
set. Taking the ignition of ethylene for example, the 10 reactions that 
can increase the ignition time of ethylene under a wide range of 
conditions with equivalence ratio of 1, 0.1 ~ 1 MPa and 1000 K ~  
1500 K were successfully selected using the proposed method. Then, 
the 10 active parameters were tested in each condition. The results 
showed that the selected active parameters can make the ignition 
delay time close to the target for each condition, which reflects the 
reliability of active parameter selection.
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Introduction

A chemical kinetic model typically consists of the thermodynamic and transport parameters 
of participating species and the parameterizing rate coefficients of reactions (Curran 2019). 
The reliability of the chemical kinetic model is determined by these parameters, which can 
be obtained from experimental databases, through theoretical calculations, analogies, or by 
educated guesses. However, the coupling of the uncertainty of these parameters and the 
nonlinearity in the chemical kinetic calculation may greatly reduce the reliability of existing 
chemical kinetic models, which results in obvious deviation compared with the experi-
mental results, even if all of the parameters in the chemical kinetic model have less 
uncertainty (Frenklach, Wang, and Rabinowitz 1992).

CONTACT Taichang Zhang taichang@imech.ac.cn State Key Laboratory of High Temperature Gas Dynamics, 
Institute of Mechanics CAS, Beijing, China

COMBUSTION SCIENCE AND TECHNOLOGY         
https://doi.org/10.1080/00102202.2023.2270146

© 2023 Taylor & Francis Group, LLC 

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/00102202.2023.2270146&domain=pdf&date_stamp=2023-10-18


Generally, when one optimization method is executed, it is necessary to limit the number 
of the parameters involved in optimization for reducing the high-dimensionality problem of 
the chemical kinetic models and improving computational efficiency (Yang 2021). 
Therefore, a natural approach is to select parameters that have significant impacts on the 
model outputs to participate in optimization, and these parameters are called active para-
meters (Frenklach, Wang, and Rabinowitz 1992). There are many benefits in selecting 
appropriate active parameters. For example, it will be more efficient to use active para-
meters to construct a response surface (Tomlin et al. 2014). The obtained response surface 
can be applied to conduct further model analysis, such as global sensitivity analysis (Li, 
Yang, and Qi 2016; Russi et al. 2008), uncertainty quantification (Frenklach et al. 2016; 
Wang and Sheen 2015) and model optimization (Samu et al. 2017, 2018).

As a tool for evaluating the effects of parameter changes on the model, sensitivity analysis 
(Saltelli et al. 2005; Tomlin 2013; Turányi 1990, 1997) plays an important role in determining 
the active parameters in optimization. If the uncertainties of candidate parameters are small, 
the active parameters can be preliminarily selected from the candidate parameters according 
to the weight of sensitivity obtained by local sensitivity analysis. However, when the uncer-
tainties of the candidate parameters are large, the variation of the parameters can deviate 
significantly from their nominal values, or there is a coupling relationship among the para-
meters, it may be scant to select the active parameters only by local sensitivity analysis (Tomlin  
2013). There are many methods that can be used in conjunction with local sensitivity analysis 
to select the active parameters for increasing the reliability of selected active parameters. Their 
idea is to add additional constraints to the selection of active parameters. Such as, considering 
the uncertainties of the parameters and the number of degrees of freedom available for 
optimization (Frenklach 2007; Park et al. 2016; Sheen and Wang 2011; Xin et al. 2014; 
Yeates et al. 2015) and using optimization potential which can be measured by the product 
of the uncertainty and the parameter sensitivity (Cai and Pitsch 2014, 2015; Vom Lehn, Cai, 
and Pitsch 2019a, 2019b, 2020). The purpose of considering the uncertainties of the para-
meters and the number of degrees of freedom available for optimization is to ensure the 
number of active parameters and their uncertainty range meet the optimization requirements. 
In the work of Wang et al (Sheen and Wang 2011) 31 active parameters were selected based on 
these considerations. The reason for using optimization potential is that although a parameter 
has a great sensitivity, its uncertainty range is small, so the influence of the parameter change 
on the model is also limited. Therefore, in the active parameter selection, the comprehensive 
influence of parameter sensitivity and its uncertainty range should be considered. In the work 
of Cai et al (Cai and Pitsch 2015) they ranked the candidate parameters based on the 
optimization potential to select the appropriate active parameters. These methods have played 
a role in the related work, but there are still some difficulties in the selection of active 
parameters. For example, it is not clear how many active parameters to select will be effective 
for subsequent model analysis. If the influence of different number of active parameters on the 
model can be obtained before the model analysis, the model analysis can be carried out from 
a group of better active parameters, thus saving the time of model analysis and ensuring better 
analysis results. This paper is devoted to ensure the reliability and quantity adequacy of 
selected active parameters.

In this paper, a new method for selecting active parameters is proposed by combining 
local sensitivity analysis method and linear programming method (Megiddo 1987). 
Compared with the above-mentioned methods of selecting active parameters, the 
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characteristics of the proposed method is that preliminary visualization of the possible 
influence of the selected active parameters on the model outputs in the process of parameter 
selection, ensuring the reliability of the selected active parameters. It can help researchers 
determine the number of active parameters needed in relevant model analysis through 
further combining with dichotomy or other screening techniques. The rest of this paper 
includes an introduction to the mathematical principle of the proposed method, the 
instruction of the proposed method by the simulation of ignition of ethylene under 
a single condition, and an application case on the selection of active parameters for ignition 
of ethylene under wide conditions.

Methodology

This section describes how the proposed method uses the local sensitivity analysis method 
to quantify the effects of multi-parameter changes on the output results of a chemical 
kinetic model, how to constrain the variation range of multiple parameters through linear 
programming, and how to iteratively select the active parameters.

Local Sensitivity Analysis

Sensitivity analysis has an important role in chemical kinetics research, because it can 
determine the importance of relative parameters and helps in focusing on parameters with 
the greatest influence on predictions.

For the simplicity of mathematical description, consider a spatially homogeneous, 
dynamical system. And the change of vector Y of the concentrations, mass fraction or 
other parameters over time can be calculated by solving the following initial value problem: 

dY
dt ¼ F Y; αð ÞY t0ð Þ ¼ Y0 (1) 

The vector α may include rate coefficients, Arrhenius parameters, thermodynamic para-
meters, and so on; t0 is the initial time. The effect of a slight change Δα in the parameter set 
α on Y at a given time can be calculated by the following Taylor expansion: 

Y t; αþ Δαð Þ � Y t; αð Þ þ
@Y t;αð Þ

@α Δα (2) 

The first-order local sensitivity matrix s t; αð Þ can be defined as @Y t;αð Þ

@α . For the convenience 
of calculation and evaluation, s t; αð Þ is typically rewritten as the normalized form S t; αð Þ, 
where S t; αð Þ ¼

@Y t;αð Þ

@α
α

Y t;αð Þ
. Then, Equation (3) can be derived from Equation (2), as 

follows: 

Y t;αþΔαð Þ� Y t;αð Þ

Y t;αð Þ
�

@Y t;αð Þ

@α
Δα

Y t; αð Þ
¼ S t; αð Þ

Δα
α

(3) 

Equation (3) describes the influence of parameter perturbation on the relative change of the 
model output results. Then, considering the test value vector YE and its corresponding time 
vector tE, we expect the Y tE;αþ Δαð Þ will be closer to YE. Under this condition, Δα is the 
variation of α in its uncertainty ranges at initial time t0, which is typically not a miniscule 
change. The substitution of YE for Y t;αþ Δαð Þ will affect the mathematical properties of 

COMBUSTION SCIENCE AND TECHNOLOGY 3



Equation (3). However, by analogy, we can construct the form of the substitution and 
assume that the linear relationship still exists: 

YE� Y tE;αð Þ

Y tE;αð Þ
�S tE; αð Þ Δ α

α (4) 

S tE; αð Þ ¼ 1
tE� t0

ò
tE

t0
S t; αð Þdt (5) 

Where S tE; αð Þ represents the characteristic sensitivity matrix corresponding to each time 
point from the initial t0 to tE, and the absolute values of its components are used to evaluate 
the disturbance ability of the parameter changes on the calculated results of this time 
interval. With a larger absolute value, the disturbance ability becomes stronger. The 
relationship expressed in (4) is the carrier of the linear programming implementation.

Linear Programming

Linear programming (LP) is defined as the problem of maximizing or minimizing a linear 
function that is subjected to linear constraints. Denote the column vector X ¼ Δα

α , the matrix 
A ¼ S tE; αð Þ and the column vector B ¼ YE� Y tE;αð Þ

Y tE;αð Þ
. For selecting active parameters, it is 

generally expected that fewer parameters require adjustment to achieve the optimization 
purpose; therefore, the following objective function is constructed and its minimum value is 
sought: 

f ¼
P

Xj j (6) 

Nonlinear function (6) represents the sum of the absolute values of the components of X, 
where the components whose value is not zero are taken as the active parameter.

From the relationship in (4), the inequality constraints can be constructed as follows: 

AiX � zBiBi � 0
AiX < zBiBi < 0

�

(7) 

Here, Ai is the row vector composed of the ith row elements of matrix A, Bi 2 B and z is 
the reduction factor whose initial value is 1.

If the coupling relationship among some candidate parameters can be expressed by linear 
relationship, additional equality constraints can be constructed as follows: 

Xj0 ¼ β0 þ β1Xj1 þ β2Xj2 þ β3Xj3 þ . . .þ βnXjn (8) 

Here, XjN 2 X and βN is non-zero coefficient where N ¼ 0; 1; 2; . . . ; n. The most intui-
tive interpretation of equality constraint (11) is that when a candidate parameter is selected 
as an active parameter, the candidate parameter coupled with it may also be selected as an 
active parameter.

Because Δα varies in its uncertainty ranges, X naturally has the following boundaries: 

Xmin � X � Xmax (9) 

Where Xmin and Xmax is the lower bound and upper on the uncertainty range of X, 
respectively.

4 Y. LI ET AL.



Linear programming requires its objective function to be linear, so the nonlinear 
Equation (6) must be transformed into one linear form. U and V are the two intermediate 
quantities to represent X and Xj j. The alternative forms constructed are shown in Equation 
(11) and Equation (12). Here, the vectors U and V are introduced into function (6), and the 
following linear function is obtained: 

f ¼
P

U þ Vð Þ (10) 

The transformation from function (6) to function (10) requires two additional equality 
constraints and two inequality constraints as follows: 

X ¼ U � V (11) 

Xj j ¼ U þ V (12) 

U ¼ Xj jþX
2 ! U � 0 (13) 

V ¼ Xj j� X
2 ! V � 0 (14) 

Finally, Equations (7–14) constitute a complete linear programming problem. In this 
linear programming problem, it almost always has a solution by reducing the value of z.

So far, the establishment process of the proposed method and the process of selecting 
active parameters have been introduced, and considered the problem of how to determine 
the active parameters when there is a coupling relationship among candidate parameters to 
a certain extent. However, there are still other problems need attention. First, when the 
uncertainty range of candidate parameters is large, the local sensitivity analysis method has 
defects. Second, it is unable to intuitively judge whether the selected active parameters are 
effective. To solve these problems, the iterative procedures will be introduced.

Iterative Procedures

Linear programming is used after local sensitivity analysis of candidate parameters. 
Sensitivity analysis data and linear constraints are used to select a group of active para-
meters from the candidate parameters and obtain the adjustment values of this group of 
active parameters. The iterative procedures repeat the above steps. Obviously, after kinetic 
model is updated, the influence of the selected active parameters on the kinetic model can 
be directly observed. It is one purpose of using the iterative procedures. The active para-
meters selected in a single iteration are not sufficient, and their influence on the model is 
difficult to approach the expectation. Therefore, another purpose of using iterative proce-
dures is to select enough active parameters so that their influence on the model is close to or 
equal to the expectation.

The initial set of α is denoted by α0 and its solution set is Δα0. Denote α1 ¼ α0 þ Δα0; 
then, we need to obtain the solution set Δα1. By analogy, for the nth iteration, the relation-
ship in (4) is updated as follows: 

Bn� 1 ¼
YE� Y tE;αn� 1ð Þ

Y tE;αn� 1ð Þ
,S tE; αn� 1ð Þ Δαn� 1

αn� 1
¼ S tE; αn� 1ð ÞXn� 1 (15) 
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Then, by using Equation (15), Equations (7) ~ (14) are updated and solved to obtain 
Δαn� 1. The variation range of Xn� 1 is always within Xn� 1;min;Xn� 1;max

� �
. The stopping 

criteria can be set according to requirements such as the maximum number of iterations or 
the change of the parameters in two adjacent iterations and so on.

In each iteration, appropriate candidate parameters will be selected as active parameters 
and the changes of active parameters in the chemical kinetic model will be updated in time. 
Therefore, the selection of active parameters and the influence of their value changes on the 
model can be directly observed, which ensures the effectiveness of the selection of active 
parameters. A graphical representation of the iteration procedures is shown in Figure 1:

Instructions of Method

In this section, the ignition delay time of premixed ethylene and oxygen was simulated 
under certain conditions in the constant volume adiabatic reactor model of Cantera 
(Goodwin et al. 2022). The pre-exponential factors of the Arrhenius equations in the USC- 
Mech II model (Wang et al. 2007) were considered as candidate parameters. Then, the 
proposed method was used to select the active parameters related to the ignition delay time. 
The results confirm the feasibility of the proposed method.

Case Study

The USC-Mech II model is a chemical kinetic model that considers the H2/CO/C1–C4 
combustion developed by Wang et al (Wang et al. 2007). The model comprises 111 species 
and 784 reactions, and has many applications in combustion simulation (El Merhubi et al.  
2016; Wang et al. 2017; Zhang et al. 2012). This case study used the USC-Mech II model to 

Figure 1. The schematic of the iteration procedures.
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simulate the ignition delay time of a mixture of ethylene (C2H4) and oxygen (O2) in the 
constant volume adiabatic reactor model of Cantera (Goodwin et al. 2022) under 1400 
K and 0.1 MPa. It is worth noting that the set values of temperature and pressure are only 
the values at initial time, and their values will change over time in the simulation. The initial 
mole fraction of ethylene and oxygen in the mixture is 0.25 and 0.75, respectively, so the 
equivalence ratio is 1. In this work, the time period from the initial time until the 
concentration of OH reaches its peak is defined as the ignition delay time. Under the 
above simulation conditions, the variation of OH mole fraction is shown in the following 
figure:

Figure 2 shows that the ignition delay time calculated by USC-Mech II model is 0.064 ms 
under the conditions of 1400 K, 0.1 MPa, constant volume and the equivalence ratio of C2 

H4 and O2 is 1. Now consider a question: if the uncertainty range of ignition delay time at 
this condition is ± 25%, namely 0.048 ms to 0.080 ms and the pre-exponential factors of the 
model are taken as the candidate parameters, how should the active parameters be selected?

Procedures of the Proposed Method

The procedures for the proposed method to select active parameters from the candidate 
parameters are introduced as follows:

(1) The first step is to determine the local sensitivity analysis object. The derivative of 
OH mole fraction with respect to time is selected as the local sensitivity analysis 
object to characterize the ignition delay time. Because the derivative at the peak of the 
OH mole fraction is constant zero, the ignition delay time can be determined by the 
time when the derivative is zero.

Figure 2. Variation of OH mole fraction of the reaction C2H4 + O2 in the initial conditions of 1400 K, 0.1 
MPa and constant volume.
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(2) The second step is to assume the uncertainty factor u of the candidate parameters. 
Considering that the nominal value of the candidate parameter is A0, the lower 
bound of the uncertainty range is Amin, and the upper bound of the uncertainty range 
is Amax, then the uncertainty factor u is represented by the following formula(Baulch 
et al. 2005): 

u ¼ log10
A0

Amin

� �
¼ log10

Amax
A0

� �
(16) 

Here, the value of u is assumed to be 0.3, that is, the uncertainty range of the pre- 
exponential factor is 0.5A0 ~2A0.

(3) The third step is to analyze the local sensitivity of the selected object and select the 
active parameters with linear programming. After the local sensitivity analysis of the 
derivative of OH mole fraction with respect to time has been calculated, the active para-
meters can be selected by linear programming according to the uncertainty range of ignition 
delay time. It is known that the upper bound of the uncertainty range of the ignition delay 
time is 0.080 ms, the following formula can be obtained from the previous section: 

B ¼ YE� Y tE;αð Þ

Y tE;αð Þ
¼

dOH
dt E;t¼0:08�

dOH
dt 0:08;αð Þ

dOH
dt 0:08;αð Þ

(17) 

A ¼ S tE; αð Þ ¼ 1
tE � t0

ò
tE

t0
S t; αð Þdt ¼ 1

0:08 ò
0:08
0 S t; αð Þdt (18) 

When the derivative of OH mole fraction with respect to time is 0 at 0.080 ms, it represents 
the peak there, but using linear programming requires some additional processing when 
dOH

dt E;t¼0:08 is 0. Here we characterize the peak with a very larger derivative value, that is, let 
dOH

dt E;t¼0:08 ¼ 104 rather than dOH
dt E;t¼0:08 ¼ 0. Based on the upper and lower bounds of 

uncertainty range of ignition delay time, the active parameters are selected by linear 
programming respectively.

(4) In each iteration, the variation of the pre-exponential factors does not exceed their 
uncertainty range. The termination condition of the iteration is set as the calculated ignition 
delay time is less than 0.05 ms or more than 0.075 ms.

Results and Discussions

Figure 3 and Figure 4 show the results of selecting active parameters for the lower and upper 
bounds of the uncertainty range of ignition delay time respectively.

As can be seen from the two figures:

(1) The number of the selected active parameters increases with iterations, and their 
overall impacts on the ignition delay time can be observed during each iteration. The 
active parameters selected by the proposed method can change the ignition delay 
time in the desired direction.

(2) In Figure 3, when the number of the selected active parameters reaches 11, the 
ignition delay time of the model decreases to 0.058 ms, but then from the 4th iteration 
to the 58th iteration, the number of active parameters only increases from 11 to 18, 
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and the ignition delay time does not change significantly. However, at the 59th 

iteration, the number of selected active parameters jumps from 18 to 58, and the 
ignition delay time drops to 0.044 ms, which meets the termination condition of 
selection. This jump occurs because the number of active parameters satisfying the 
constraints sharply increased in the 59th iteration.

Figure 3. Variation of number of the selected active parameters for the lower bound of the uncertainty 
range of ignition delay time under the case setting conditions.

Figure 4. Variation of number of the selected active parameters for the upper bound of the uncertainty 
range of ignition delay time under the case setting conditions.
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(3) In Figure 4, an important incident is found, although it is an accidental situation 
caused by our algorithm. In the second iteration, it can be found that the ignition 
delay time decreases from 0.064 ms to 0.045 ms, and the number of the selected active 
parameters is 24, while the number of active parameters selected to reach this ignition 
delay time in Figure 3 is 58. By comparison, only one active parameter is the same in 
these two active parameter sets. This directly indicates that the selection of active 
parameters with the same influence on ignition delay time can be different under the 
same conditions, which is also applicable to other research objects. The most impor-
tant thing is to ensure the validity of the selected active parameters. At the 23rd 

iteration, the number of selected active parameters is 44, and the ignition delay time 
rises to 0.079 ms, which meets the selection requirements of active parameters.

Figure 3 and Figure 4 present that the selected active parameters are able to be evaluated by 
the proposed method. However, in model analysis, especially global sensitivity analysis or 
global uncertainty analysis, in order to improve the calculation efficiency, it is necessary to 
limit the number of the active parameters used.

Next, the selected active parameters will be further screened. Here, the results in Figure 4 
are taken as an example. When the iteration terminates, 44 active parameters are selected 
after 23 iterations. In order to further screen these active parameters, the weight w is 
introduced to evaluate the importance of active parameters as follows: 

wi ¼
NPN

j¼1
Fi;j

(19) 

Where wi represents the weight of an active parameter, Fi;j represents the rank of the 
absolute value of the characteristic sensitivity Si of this active parameter at the jth iteration, 
and when the rank of Si;j is 1, the absolute value of its characteristic sensitivity is the largest, 
and N represents the total number of iterations.

The larger w of the active parameter is, the more important the active parameter is, 
although it may not be completely accurate. The active parameters are further screened by 
dichotomy. Although the dichotomy is not the optimal method for screening active para-
meters, its screening efficiency is high and its mathematical essence is easy to understand, 
which is the reason for choosing it in this paper. According to the weight ranking, the active 
parameters will be divided into two groups of similar size in order, that is, the active 
parameters ranked 1–22 form one group A, and the active parameters ranked 23–44 form 
another group B. Here, the values of the active parameters at the 23rd iteration are taken as 
the reference values, and the influence of group A and group B on the ignition delay time of 
the model is compared. The group which is closer to the ignition delay time of 0.08 ms will 
be selected and divided again, and the above steps will be repeated. The screened results are 
shown in Figure 5 below:

From Figure 5, it can be found that the active parameters that have important impacts on 
the ignition delay time can be further screened based on the weight ranking and dichotomy. 
However, if the active parameters are selected only through the weight ranking, there may 
be a deficiency. In Figure 5, the group of the top five active parameters in the weight ranking 
is far less influential on the ignition delay time than the group of the active parameters with 
weight ranking 6 ~ 11. The following table shows the reactions and the multiplication 
factors of their pre-exponential factors corresponding to weight ranking from 1 to 11:

10 Y. LI ET AL.



In Table 1, although the adjustment values of the top five active parameters 
according to weight ranking are large, the high local sensitivity weight of active 
parameters does not necessarily mean that adjusting their parameters will has great 
impacts on the model, which indicates that it may be insufficient to select active 
parameters only by local sensitivity analysis method. The method proposed in this 
paper avoids this shortcoming and can ensure the reliability of active parameter 
selection.

Application

In order to exclude the distinctiveness of the above case, this section further demonstrates 
the feasibility of the proposed method for selecting the active parameters under a wide range 
of conditions. It also takes the ignition delay time of ethylene as the research object.

Figure 5. Influence of different groups of active parameters on ignition delay time.

Table 1. The reactions and the multiplication factors of their pre-exponential factors correspond-
ing to weight ranking of Figure 5.

No. Reaction Weight ranking Multiplication factor

16 H + HO2 <=> 2 OH 1 2.00
125 CH4 + OH <=> CH3 + H2O 2 0.50
779 O2 + c-C4H5 <=> CH2CHO + CH2CO 3 0.50
48 CH + H2 <=> CH2 + H 4 0.50
49 CH + H2O <=> CH2O + H 5 2.00
41 HCO + O2 <=> CO + HO2 6 1.51
17 HO2 + O <=> O2 + OH 7 0.50
68 CH2* + H <=> CH + H2 8 0.97
96 CH3 + HO2 <=> CH3O + OH 9 0.50
126 CH + CH4 <=> C2H4 + H 10 0.50
52 CH + CO2 <=> CO + HCO 11 0.50

COMBUSTION SCIENCE AND TECHNOLOGY 11



Simulation Settings

Based on the previous section, the ignition delay time of ethylene were calculated under 
different conditions when the equivalence ratio was 1, and the ignition delay time was 
increased by 1.25 times as the test time set tE used in the proposed method, and the test 
value corresponding to each time point in the test time set was 10,000, as shown in Table 2. 
The termination condition is that a group of active parameters is found, which increases the 
ignition delay time under all operating conditions. The other settings are the same as in the 
previous section.

Under the setting conditions in Table 2, the proposed method is used to select a group of 
active parameters that increase the ignition delay time under wide conditions. Although no 
active parameters that increased the ignition delay time (IDT) by 1.25 times were observed 
in subsequent work, the selected active parameters also make the ignition delay time of each 
working condition close to the target.

Results and Discussions

Figure 6 shows the results of using the proposed method to select the active parameters that 
increase the ignition delay time of each condition. It can be seen from Figure 6 that in the 
68th iteration, the proposed method found a group of active parameters that increase the 
ignition delay time under all conditions, which verifies the feasibility of the proposed 
method under multiple conditions. But the number of active parameters selected is 155 
and needs further be reduced.

In the previous section, Equation (19) was used to calculate the weight of each active 
parameter under a single condition. Here, the weight of each active parameter under 
multiple conditions is the sum of the weight of each condition. After ranking the active 
parameters based on their weights, the dichotomy was used to screen the active parameters. 
The following Table 3 shows the selected active parameters that meet the requirements after 
screening and the corresponding increase of ignition delay time. Based on the data in Tables 
3, 4 shows the reactions corresponding to the active parameters with weight ranking 58 ~ 67 
and the multiplication factors of their pre-exponential factors.

To further verify the reliability of the active parameters selected in Table 4, the variation 
of ignition delay time under each condition in Table 2 were studied when only pre- 

Table 2. Ignition delay time of ethylene under wide conditions and test setting in the process of active 
parameter selection.

No. Pressure, MPa Temperature, K IDT, ms tE (IDT*1.25), ms YE (dOH
dt E;tE

)

1 0.1 1000 5.95 7.44 10000
2 1100 1.57 1.97
3 1200 4.82E–01 6.03E–01
4 1300 1.62E–01 2.03E–01
5 1400 6.40E–02 8.00E–02
6 1500 2.77E–02 3.46E–02
7 1 1000 7.50E–01 9.37E–01
8 1100 2.10E–01 2.62E–01
9 1200 7.28E–02 9.10E–02
10 1300 2.79E–02 3.49E–02
11 1400 1.09E–02 1.37E–02
12 1500 4.48E–03 5.60E–03
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Figure 6. Variation of number of the selected active parameters and increased IDT under conditions of 
Table 2.

Table 3. The groups of selected active parameters according to weigh ranking and the 
corresponded increase percent of the ignition delay time.

Weight ranking Maximum increase Minimum increase Mean increase

1~155 39% 5% 14%
1~77 30% 10% 16%
39~77 59% 8% 21%
58~77 48% 8% 20%
58~67 32% 8% 14%
63~67 51% 6% 11%

Table 4. The reactions and the multiplication factors of their pre-exponential factors corresponding 
to weight ranking of Table 3.

No. Reaction Weight ranking Multiplication factor

1 H + O2 <=> O + OH 58 1.00
41 HCO + O2 <=> CO + HO2 59 2.00
125 CH4 + OH <=> CH3 + H2O 60 1.45
615 H + tC4H9 <=> CH3 + iC3H7 61 0.50
24 HO2 + OH <=> H2O + O2 62 0.95
704 H + HOC6H4CH3 <=> C6H5CH3 + OH 63 2.00
96 CH3 + HO2 <=> CH3O + OH 64 0.50
87 CH + CH2O <=> CH2CO + H 65 0.50
708 C6H6 + OH <=> C6H5 + H2O 66 2.00
86 CH2O + HO2 <=> H2O2 + HCO 67 0.78
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Table 5. The values of the selected active parameters when the increase in ignition delay time is close to 
25% under different conditions (1).

No. (Reaction)

Multiplication factor

Condition 1 Condition 2 Condition 3 Condition 4 Condition 5 Condition 6

1 1.00 1.52 0.50 0.50 1.00 1.00
24 0.95 1.19 0.74 2.00 0.95 0.95
41 2.00 1.57 1.34 1.25 2.00 1.38
86 0.78 1.53 0.78 0.78 0.78 0.78
87 0.50 1.58 0.50 0.75 0.50 0.50
96 0.50 0.50 0.50 0.50 0.50 0.52
125 1.45 1.45 0.50 1.50 1.45 1.45
615 0.56 1.98 1.81 0.57 0.50 0.50
704 1.71 0.69 0.54 0.50 2.00 2.00
708 2.00 1.29 0.87 1.90 2.00 2.00
Increase percent in IDT 29% 26% 22% 25% 26% 19%

Table 6. The values of the selected active parameters when the increase in ignition delay time is close to 
25% under different conditions (2).

No. (Reaction)

Multiplication factor

Condition 7 Condition 8 Condition 9 Condition 10 Condition 11 Condition 12

1 1.00 1.00 2.00 0.50 0.50 1.00
24 1.32 0.94 2.00 2.00 0.50 0.95
41 2.00 2.00 0.50 1.58 0.94 2.00
86 1.61 0.78 0.50 0.50 0.500 0.78
87 2.00 0.50 0.50 0.50 0.50 0.50
96 0.50 0.50 1.50 0.50 0.53 0.50
125 1.45 1.45 2.00 2.00 1.34 1.45
615 0.88 0.50 2.00 2.00 0.50 0.50
704 0.50 2.00 0.53 0.50 0.72 2.00
708 2.00 2.00 2.00 2.00 0.53 2.00
Increase percent in IDT 24% 26% 18% 17% 21% 22%

Figure 7. Increase percent in ignition delay time under different conditions according to Tables 5 and 6.
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exponential factors were considered as candidate parameters of the 10 reactions in Table 4. 
The termination condition of the iteration was set as the number of iterations is more than 
200 to observe the effect of the selected parameters. Tables 5 and 6 show the values of the 
selected active parameters when the increase percent in ignition delay time is close to 25% 
under different conditions. Figure 7 shows the effects of the selection of active parameters in 
Tables 5 and 6 on the increase in ignition delay time. From Figure 7, it can be found that the 
selected active parameters can better approach the target for each condition, which reflects 
the reliability of active parameter selection.

Concluding Remarks

Based on sensitivity analysis and linear programming, this paper proposes a new method for 
selecting the active parameters. Compared with the other methods for selecting active 
parameters, the characteristics of the proposed method is that preliminarily visualizing 
the influence of the selected active parameters on the model outputs to make sure the 
reliability of the selected active parameters. In Section 3 and Section 4, the reliability and 
characteristics of the proposed method were demonstrated by selecting the active para-
meters related to ignition delay time of ethylene under a wide range of conditions.
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