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Abstract
Through direct numerical simulation, the transition from pure mode A to mode
B in the near wake of a circular cylinder is studied without consideration of
vortex dislocations. The Reynolds number Re is calculated from 100 to 330
with a computational spanwise length of 4 diameters. In the present section, the
spatiotemporal evolution of the vorticity and its sign are analyzed. The results
show that mode B, as a kind of weak disturbed vorticity with opposite signs,
actually appears partially on the rear surface of the cylinder and in the shear
layers once Re exceeds 193. With increasing Re, the vortex-shedding patterns
in the near wake undergo the initial generation stage of mode B coupling with
the fully developed pure mode A (193⩽ Re< 230), the mode swapping or
coexistence stage between modes A and B (230⩽ Re< 260∼ 265), the self-
adjustment stage of the nondimensional spanwise wavelength from 0.8 to 1
in dominant mode B (260∼ 265⩽ Re< 310), and the full development stage
of mode B (Re⩾ 310). In particular, the spanwise phase transition initially
occurs at a certain spanwise position in the initial generation stage where a part
of mode A and a part of mode B with specific vorticity signs appear, e.g. the
Π− vortex in mode A and the Π+ vortex in mode B, in which Π− and Π+

vortices are vortices with three vorticity components satisfying the vorticity
sign law and shed from the upper and lower shear layers, respectively.
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1. Introduction

A bluff body is widely implemented in many engineering applications, such as suspension
bridges, high architectures, flexible risers and heat exchangers. Fluid flow past a bluff body
is a classical and basic subject in fluid mechanics. One main reason for this interest is the
appearance of unsteady wake associated with vortices alternately shedding behind a body. As a
result, large unsteady fluid forces act on a body, which has the potential to cause fatigue damage
and even destroy the structural integrity. Toward understanding and controlling wake vortex
dynamics, many studies (Karniadakis and Triantafyllou 1992, Wu and Ling 1993, Barkley and
Henderson 1996, Williamson 1996a, 1996b, Henderson 1997, Prasad and Williamson 1997,
Leweke and Williamson 1998, Persillon and Braza 1998, Ling and Chang 1999, Barkley et al
2000, Darekar and Sherwin 2001, Posdziech and Grundmann 2001, Thompson et al 2001,
Sheard et al 2003, Rao et al 2013, Jiang et al 2016, 2017, 2018, Agbaglah andMavriplis 2017,
2019, Jiang and Cheng 2019) have been published in recent decades that apply analysis any
methods, including physical model testing, direct numerical simulations (DNSs), and linear
or nonlinear stability analysis. Comprehensive reviews can be found in previous references
(Williamson 1996a, Posdziech and Grundmann 2001).

As a typical example of such a problem considering flow past a circular cylinder, four lam-
inar stages for different flow structures in the wakemainly appear in a wake transition sequence
(Williamson 1996a). In the laminar steady regime at a Reynolds number Re below approxim-
ately 49, where Re is defined based on the approaching flow velocity U∞, the cylinder dia-
meter D and the kinematic viscosity ν of the fluid, the wake comprises a steady recirculation
region of two symmetrically placed vortices on each side of the wake. After the primary wake
instability emerges at Re> 49 due to a Hopf bifurcation, the two-dimensional (2D) spanwise
vortices (with spanwise vorticity ωz) are alternately shed from the body, known as Kármán
vortex streets, in the laminar vortex shedding regime at Re< 140∼ 194. Until Re reaches
approximately 260, two discontinuous changes, mainly associated with two wake instabilit-
ies, i.e. modes A and B, in the wake formation appear in the three-dimensional (3D) laminar
wake transition regime. Beyond a Reynolds number of 260 in the last stage, a particularly
ordered 3D streamwise vortex structure (with streamwise vorticity ωx) in the near wake, as
the fine-scale three dimensionality, becomes increasingly disordered, and the primary wake
instability behaves remarkably like the laminar shedding mode.

In particular, in the 3D laminar wake-transition regime, two different wake instabilities
appear successively with their specific mechanisms and features, typically manifested by the
variation of Strouhal number St (nondimensional vortex-shedding frequency) as Re increases
(Williamson 1996a, Leweke and Williamson 1998, Ling and Chang 1999, Thompson et al
2001, Jiang et al 2016). At the first discontinuity which is hysteretic near Re= 180∼ 194,
the first wake instability, i.e. (pure) mode A, occurs with the inception of vortex loops due
to the spanwise wavy deformation of primary vortices as they are shed. Such deformation is
caused by an elliptic instability of the primary vortex cores and the formation of streamwise
vortex pairs at a spanwise wavelength of approximately 3∼ 4 diameters results from Biot-
Savart induction. At the second discontinuous change in the St−Re relation over a range of
Re from 230 to 250, the second wake instability, i.e. (pure) mode B, gradually appears due
to a gradual transfer of energy from mode A shedding. Such mode B comprises finer-scale
streamwise vortices, with a spanwise length scale of approximately one diameter. This occurs
mainly due to a hyperbolic instability of the braid shear layer region. In addition, there are other
formation mechanisms (Yokoi and Kamemoto 1992, 1993, Brede et al 1996, Agbaglah and
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Mavriplis 2017, Lin and Tan 2019, 2022, Lin et al 2019b, Kokash and Agbaglah 2022), such
as vortex tongues under an instability of the braid region (Brede et al 1996), axial stretching
of the upstream perturbed vorticity (Agbaglah and Mavriplis 2017) and 3D instability on and
near the cylinder surface coupling with the vortex-induced vortex mechanism (Lin and Tan
2019, Lin et al 2019b, Lin 2022) in mode A.

Aside from the above two puremodes, there is a large intermittent low-frequencywake velo-
city fluctuation owing to the presence of large-scale spot-like vortex dislocations in the wake
transition frommodeA, i.e. modeA∗ (modeA+ vortex dislocations) (Williamson 1996a). The
critical Reynolds number Recr at which mode A∗ wake instability emerges is identified at 194
in certain experiments, for which the end effects are eliminated by using nonmechanical end
conditions (Williamson 1996b). This value is very close to those of 188.5 (±1.0), 190 (±0.02)
and 190.5 predicted through linear stability analysis (Barkley and Henderson 1996, Posdziech
and Grundmann 2001, Rao et al 2013), and 194 and 195 (at most) calculated by DNS (Jiang
et al 2016, Lin 2022). In addition, the effect of mode A∗ instability destabilizes mode B in the
nonlinear interaction between the two modes (Henderson 1997). These dynamics lead to the
first emergence of mode B instability at Re∼ 230 in experiments (Williamson 1996b) much
lower than the critical Re of 259 and 261 (±0.2) predicted through linear stability analysis
(Barkley and Henderson 1996, Posdziech and Grundmann 2001), but in good agreement with
the predicted Re= 230 based on nonlinear stability analysis (Barkley et al 2000, Sheard et al
2003). Moreover, experimental study has revealed that the wake transition from mode A∗ to
mode B is a gradual process with intermittent swapping between the two modes (Williamson
1996b). Therefore, the appearance of mode A∗ or vortex dislocations will significantly inter-
fere with both pure modes A and B in the 3D wake transition of a circular cylinder. It should
be stated that the concept of ‘pure’ modes A and B in this paper refers to vortex-shedding
patterns that satisfy the spatiotemporal symmetry of vorticity in the near wake (Barkley and
Henderson 1996, Robichaux et al 1999) and specific spanwise wavelengths above in modes A
and B, respectively, without any interference, such as vortex dislocations.

Correspondingly, the question arises: are vortex dislocations an indispensable condition
in the transition from mode A to mode B? In other words, when the phenomenon of vortex
dislocations is missing, is such mode transition a simple process (i.e. without mode swapping),
or is it still a gradual progress with intermittent swapping?

In the present work, the primary goal is to explore the possible transition from pure mode A
to mode B without any interference of vortex dislocations based on DNS. Therefore, only one
spanwise wavelength of four diameters is taken into account, which is near the most unstable
wavelength (Williamson 1996a, Henderson 1997). In the first part of the study (Lin 2023), a
preliminary conclusion is given: in the absence of vortex dislocations, a mode swapping of
pure modes A and B in the near wake still occurs when Re varies between 230 and 240. Thus,
the spatiotemporal evolution of vorticity in the whole transition at Re ∈ [190,330] is analyzed
in the second part of this study. In addition, because the spanwise phase is dependent on the
specific spanwise position associated with vortices in pure modes A and B appearing on the
rear surface and in the near wake, based on 3D stability analysis (Barkley and Henderson 1996,
Posdziech and Grundmann 2001), we mainly focus on the varying spanwise positions of both
modes A and B. The remainder of this paper is organized as follows. The governing equations
coupled boundary conditions and numerical methods are first presented. Then, features in the
vorticity signs in modes A and B and the spanwise phase transition between them are mainly
investigated and discussed in detail. Finally, conclusions are presented.
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Figure 1. (a) Schematics of a flow past a straight cylinder with a circular cross-section,
and computational domain in the (x, y) plane and mesh distributions in (b) the whole
flow region and (c) near the cylinder with a closer view.

2. Numerical simulations

As shown in figure 1(a), the fluid flow past a fixed cylinder with a circular cross-section is
studied. The fluid is incompressible with constant density ρ and kinematic viscosity ν. All
body forces are conservative and can be reduced to components of pressure.

The inertial Cartesian coordinate system, (x,y,z), is established as shown in figure 1(a).
Among the axes, the x-axis (streamwise direction) is aligned to the incoming free stream with
uniform velocity U∞. The z-axis (spanwise direction) is parallel to the cylinder span. The
y-axis (vertical direction) is transverse to both the free stream and the cylinder axis.

The incompressible continuity and Navier–Stokes equations in dimensionless forms are
written as:

∇· u= 0, (2.1)

∂u
∂t

+(u ·∇)u=−∇p+ 1
Re

∇2u, (2.2)

where∇ is the gradient operator, u is the velocity vector with three components (u,v,w) along
their own coordinates, t is the time scaled byD/U∞, p is the pressure scaled by ρU2

∞, and Re is
the Reynolds number defined by U∞D/ν. The velocities are scaled by the free-steam velocity
U∞ and the lengths by the cylinder diameter D. Thus, all variables used in the following
context are scaled by ρ, U∞ and D.
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Here, we describe the main variables and parameters involved in this study. The vorticityω
is defined as the curl of velocity u, i.e. ω =∇× u, with three components (ωx,ωy,ωz) along
their coordinates. As an important indicator in the present fluid dynamics, variations in the drag
and lift forces acting on the body are taken into account and normalized as the drag and lift
coefficients, CD and CL, respectively. Then, the mean drag coefficient, CD, and the root-mean-
square (RMS) lift coefficient, C ′

L, are used to determine the intensity of fluid forces. When
spanwise vortices are alternately shed in the near wake, the frequency of such a shedding
vortex, f, is obtained through Fourier analysis of the time history of CL. This value is scaled
as the Strouhal number, St, which is defined by St= fD/U∞.

For the initial condition, the flow is assumed to be motionless with u= 0 and p= 0 at t= 0,
except at the inlet.

For the boundary conditions, as shown in figure 1(a), the 3D flow is first assumed to be
spatially periodic across the span. At the inlet, the uniform free stream is prescribed as u= U∞
and v= w= 0. At the outlet, the simple outflow with ∂u/∂x= 0 is applied. At both lateral
boundaries along the y-axis, the free-slip boundary conditionwith ∂u

∂y = v= ∂w
∂y = 0 is adopted.

On cylinder surfaces, the no-slip boundary conditionwith u= 0 is used. The reference pressure
of p∞ = 0 is specified at the center of the inlet.

As shown in figure 1(a), the entire nondimensional computational domain for the present
wake flow is mainly captured through the inlet length LI = 20, the outlet length LO = 30,
the vertical height LH = 20 and the computational spanwise length or cylinder span LZ = 4.
Therefore, the 3D computational domain of present simulations, (LI +LO)× (LH +LH)×LZ,
is (20+ 30)× (20+ 20)× 4. The blockage ratio β, as defined by 1/(2LH), is thus equal
to 2.5%.

Themesh distribution in the 2D computational domain is presented in figure 1(b). The smal-
lest grid size of 0.001 is the normal distance of the first layer of the mesh next to the cylinder
surface. A local mesh is mainly refined in the large circular region with a radial diameter of
approximately 4.24, as shown in figure 1(c). A coarse mesh is mainly used far from the cyl-
inder. The total element number of the present 2D mesh Nxy is 20 100. As already analyzed
and reported in previous works (Henderson 1997, Lin and Tan 2019), a uniform spanwise grid
size, ∆z= 0.1, is estimated and adopted.

The dimensionless time step ∆t is 0.01. Here, the maximal cell Courant number,
Co= |u|∆t/∆l, is less than approximately 0.8, where ∆l is the cell size in the direction of
the local velocity u through a cell.

Numerical calculations are performed using FLUENT V6.3.26 software with the finite-
volume method. The viscous model adopts the ‘Laminar’ configuration. The pressure-implicit
splitting of operators algorithm is applied as a pressure-velocity coupling scheme. For the dis-
cretization scheme, the second order is applied for the pressure equation; the second-order
upwind scheme is used in solving the momentum equation; and the second-order implicit
scheme is adopted in all unsteady formulations. In particular, the gradient computation is
solved by the Green-Gauss node-based method.

The dimensionless error of the mass conservative equation (2.1), reaches the maximal
error of O(10−7), while the nondimensional errors of the three components of the momentum
equation (2.2), are lower, on the order of O(10−9).

The numerical model used here and independence studies about the computational domain
and mesh distribution have already been validated in detail. For more details, we point inter-
ested readers to previous studies (Lin and Tan 2019, 2022, Lin 2022, 2023) that used the
identical computational domain and mesh distributions.
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Figure 2. Schematic diagrams of (a)+|ωz| and−|ωz| denoted by solid and dashed lines,
respectively, indicating the upper and lower shear layers, braid shear layers (Leweke
and Williamson 1998), (shedding) vortex cores and braids in the near wake of a circular
cylinder, and (b) four typical moments in a whole cycle of the fluctuating lift coefficient.
Note that the position y= 0 on the rear surface denotes the vertical center on the rear
surface, while the position y= 0 in the near wake denotes the wake center plane.

3. Results and discussion

In analyzing the characteristics of vorticity and its sign in pure modes A and B, we initially
focus on the near wake (particularly the shear layers and the shedding primary vortices, which
include the vortex braids and cores), as shown in figure 2(a). Then, we focus on the rear surface
of the cylinder, and finally we focus on the relationship between the rear surface and the shear
layers. Only vorticities with intensities greater than 10−3 in these regions are modeled and
discussed. The results are analyzed and displayed primarily at specific moments, i.e. T0 (or
T4), T1, T2 and T3, as shown in figure 2(b).

In addition, for the sake of convenience, the sign of the nonzero vorticity ω is defined here
by a sign function sgn(ω) as

sgn(ω) =

{
+1, if ω > 0,
−1, if ω < 0.

(3.1)

3.1. Basic sign characteristics of additional vorticities in pure mode A

In the spatiotemporal evolution of pure mode Awith the spanwise wavelength λA = 4 in the Re
range from 100 to 200, there are two stages. When 140< Re< 193, the first stage is the initial
generation of pure mode A (Lin 2022), as shown in figure 3. When Re exceeds 193, pure mode
A is in the full development stage (Lin and Tan 2019), as shown in figure 4. Regardless of these
two stages in pure mode A, at the same spanwise position, there are special sign relationships
of dominant additional vorticities, (ωx)A and (ωy)A (or ωA), in the near wake summarized as
follows:

sgn(ωx)AN (y> 0) =− sgn(ωx)AN (y< 0) , (3.2a)

sgn(ωy)AN (y> 0) =+ sgn(ωy)AN (y< 0) , (3.2b)

sgn(ωx)AN (y> 0) =+ sgn(ωy)AN (y> 0) , (3.2c)
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Figure 3. At t= T0, top views of isosurfaces of (a) ωx =±0.01, (b) ωy =±0.01 and
(c) ωz =±0.2, in which the dominant vorticity is used in describing pure mode A at the
initially generated stage in the near wake at Re= 190 (< 193) with LZ = 12 (Lin 2022),
where red and blue colors denote positive and negative values, respectively, and arrows
with hollow and filled arrowheads denote vorticity originally generated or shed from the
upper and lower shear layers, respectively. Note that the cylinder is denoted by the grey
translucent surface and the flow is from left to right.

Figure 4. At t= T0, top views of isosurfaces of (a) ωx =±0.2, (b) ωy =±0.2 and
(c) ωz =±0.2, in which the dominant vorticity is used in describing pure mode A at
the fully developed stage in the near wake at Re= 195 (⩾ 193) with LZ = 4 (Lin and
Tan 2019) (same descriptions as in figure 3).

sgn(ωx)AN (y< 0) =− sgn(ωy)AN (y< 0) , (3.2d)

where the subscript notations ‘A’ and ‘N’ indicate puremodeA and the near wake, respectively,
and y> 0 and y< 0 indicate ωA originally generated or shed from the upper and lower shear
layers, respectively.

Next, as reported in previous works, additional vorticities in the near wake are generated
on the rear surface (Lin and Tan 2019, Lin 2022). These also have special distributions in
vorticity signs, as shown in figures 5 and 6 for the two stages. Typically, at t= T3 and Re= 190,
common characteristics for ωA with λA at the same spanwise position are summarized as
follows:

sgn(ωx)AR (y> 0) =+ sgn(ωx)AR (y< 0) , (3.3a)

sgn(ωy)AR (y> 0) =− sgn(ωy)AR (y< 0) , (3.3b)

sgn(ωx)AR (y> 0) =− sgn(ωy)AR (y> 0) , (3.3c)

sgn(ωx)AR (y< 0) =+ sgn(ωy)AR (y< 0) , (3.3d)
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Figure 5. At Re= 190 with LZ = 12, on the rear surface, contours of ωx at (a) t= T0

and (b) T3, and ωy at (c) t= T0 and (d) T3, in which the dominant vorticity is used in
describing pure mode A at the initial generation stage (Lin 2022), where red and blue
colors denote positive and negative values, respectively, green color indicates vorticity
almost zero, i.e. |ω|< 10−3, dotted dash lines denote the center position y= 0, and
arrows at t= T0 denote the disturbed vorticity with a spanwise wavelength λA but its
vorticity sign is different from that in pure mode A, e.g. subfigures (b) and (d) at t= T3.

Figure 6. At Re= 195 with LZ = 4, on the rear surface, contours of ωx at (a) t= T0

and (b) T3, and ωy at (c) t= T0 and (d) T3, in which the dominant vorticity is used
in describing pure mode A at the full development stage (Lin and Tan 2019), where
arrows with plain arrowheads denote the disturbed vorticity, the same as in figure 5, near
y= 0 with λA = 4, and arrows with filled arrowheads denote the disturbed vorticity with
smaller spanwise wavelengths 1

6LZ and 1
4LZ at T0 and T3, respectively. Symbols ⊗ at

y= 0 denote the ‘end’ positions, z= 1.71 and 3.7, at which ωx = ωy = 0.

where the subscript ‘R’ denotes the rear surface, and y> 0 and y< 0 on the rear surface indic-
ate ωA at the upper and lower sides of the vertical center y= 0 on the rear surface, respectively.
Moreover, as shown by arrows in figures 5 and 6, there is the disturbed vorticity on the rear sur-
face, as well as in the near wake, as respectively denoted by ‘(ωx)DA’ and ‘(ωy)DA’ (or ‘ωDA’).
This disturbed or perturbed vorticity exhibits a spanwise wavelength λDA and/or vorticity sign
that is different from that expressed by equations (3.2) and (3.3) in pure mode A.

Finally, at t= T0, as shown in figures 3 and 5 at Re= 190 or figures 4 and 6 at Re= 195,
the sign relationship between ωA in the near wake and on the rear surface can be expressed at
the same spanwise position as follows:

sgn(ωx)AN (T0,y> 0) =− sgn(ωx)AR (T0,y> 0) , (3.4a)

sgn(ωx)AN (T0,y< 0) =+ sgn(ωx)AR (T0,y< 0) , (3.4b)

sgn(ωy)AN (T0,y> 0) =+ sgn(ωy)AR (T0,y> 0) , (3.4c)

sgn(ωy)AN (T0,y< 0) =− sgn(ωy)AR (T0,y< 0) . (3.4d)
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Figure 7. At Re= 195 with LZ = 4 in pure mode A, top views of typical streamlines
past the cylinder at (a) t= T0 and (b) T3 near z= 1.71, where the grey surface denotes
the cylinder.

Figure 8. At t= T0, top views of isosurfaces of (a) ωx =±0.2, (b) ωy =±0.1 and
(c) ωz =±0.2, in which the dominant vorticity is used in illustrating pure mode B in
the near wake at Re= 300 with LZ = 1 (Lin and Tan 2022) (same descriptions as in
figure 3).

In addition, as shown in figure 7 at Re= 195, near the special position z= 1.71 at two typical
times T0 and T3, adjacent streamlines bypassing the upper surface (in the upper shear layer)
are close to each other at x< 1, while adjacent streamlines that bypass the lower surface (in
the lower shear layer) are far from each other. This phenomenon, i.e. the parallel streamlines
near the cylinder surface varying wavily across the span, is well consistent with that reported
by Yokoi and Kamemoto (1992, 1993).

3.2. Basic sign characteristics of additional vorticities in pure mode B

Pure mode B is mainly presented in 3D computations with LZ = 1, as shown in figure 8,
and further confirmed in simulations with LZ = 2 and 4 (such as figures 11–14 at typical
Reynolds numbers of 310 and 320 in the section 3.4). The typical spanwise wavelength λB

is 1. According to previous work (Lin and Tan 2022), the characteristics of additional vorticity
signs in pure mode B, (ωx)B and (ωy)B (or ωB), at the same spanwise position are obtained in
the near wake as follows:

sgn(ωx)BN (y> 0) =+ sgn(ωx)BN (y< 0) , (3.5a)

sgn(ωy)BN (y> 0) =− sgn(ωy)BN (y< 0) , (3.5b)

sgn(ωx)BN (y> 0) =+ sgn(ωy)BN (y> 0) , (3.5c)
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Figure 9. At Re= 300 with LZ = 1, on the rear surface, contours of ωx at (a) t= T0

and (b) T1, and ωy at (c) t= T0 and (d) T1, in which the dominant vorticity is used in
describing pure mode B (Lin and Tan 2022), where red and blue colors denote pos-
itive and negative values, respectively, and green color denotes vorticity almost zero,
i.e. |ω|< 10−3. Note that the disturbed vorticity, denoted by arrows, has a spanwise
wavelength λB but its vorticity sign is different from that in pure mode B.

sgn(ωx)BN (y< 0) =− sgn(ωy)BN (y< 0) , (3.5d)

where the subscript ‘B’ denotes pure mode B.
Next, as shown in figure 9, neglecting the effect of disturbed vorticity denoted by arrows

on the main distribution of ωB on the rear surface, common features of ωB signs at the same
spanwise position can be expressed as follows:

sgn(ωx)BR (y> 0) =− sgn(ωx)BR (y< 0) , (3.6a)

sgn(ωy)BR (y> 0) =+ sgn(ωy)BR (y< 0) , (3.6b)

sgn(ωx)BR (y> 0) =− sgn(ωy)BR (y> 0) , (3.6c)

sgn(ωx)BR (y< 0) =+ sgn(ωy)BR (y< 0) . (3.6d)

Similarly, as shown by arrows in figure 9, there is also the disturbed vorticity on the rear
surface, as well as in the near wake, denoted by ‘(ωx)DB’ and ‘(ωy)DB’ (or ‘ωDB’). This dis-
turbed vorticity has a spanwise wavelength and/or vorticity sign different from that expressed
by equations (3.6) and (3.5) in pure mode B.

As a result, at t= T0, as shown in figures 8 and 9 at Re= 300, the sign relationship between
dominant additional vorticities in the near wake and on the rear surface can be expressed at
the same spanwise position as follows:

sgn(ωx)BN (T0,y> 0) =+ sgn(ωx)BR (T0,y> 0) , (3.7a)

sgn(ωx)BN (T0,y< 0) =− sgn(ωx)BR (T0,y< 0) , (3.7b)

sgn(ωy)BN (T0,y> 0) =− sgn(ωy)BR (T0,y> 0) , (3.7c)

sgn(ωy)BN (T0,y< 0) =+ sgn(ωy)BR (T0,y< 0) . (3.7d)

Moreover, as shown in figure 10, regardless of whether LZ = 4 or 1 in pure mode B, adjacent
streamlines bypassing both sides of the cylinder at x< 1 are almost parallel to each other or
slightly skewed across the span.
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Figure 10. In pure mode B, top views of typical streamlines past the cylinder at
(a) t= T0 and (b) T3 when Re= 270 and LZ = 4, and at (c) t= T0 and (d) T1 when
Re= 300 and LZ = 1. Note that the cylinder is denoted by the grey surface.

In summary, these special sign characteristics of additional vorticities on the rear surface
and in the near wake are helpful in identifying pure mode A or B in the following spanwise
phase transition.

3.3. Relationship between pure modes A and B

3.3.1. Vorticity sign relationships. Based on the above sign features in pure modes A and
B at the same spanwise position, there are two common sign relationships. The first in the
near wake, already presented in previous studies (Lin et al 2018a, Lin and Tan 2019, 2022), is
summarized as follows:

sgn(ωx)N (y> 0) =+ sgn(ωy)N (y> 0) , (3.8a)

sgn(ωx)N (y< 0) =− sgn(ωy)N (y< 0) . (3.8b)

However, the second on the rear surface is obtained as follows:

sgn(ωx)R (y> 0) =− sgn(ωy)R (y> 0) , (3.9a)

sgn(ωx)R (y< 0) =+ sgn(ωy)R (y< 0) . (3.9b)
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Accordingly, the sign relationship of the first sign variable between additional vorticities,
defined byϖ1 = ωx ·ωy, originally (generated and/or shedding) from the upper and lower shear
layers at the same spanwise position is presented as follows:

sgn(ϖ1)N (y> 0) =+ 1, (3.10a)

sgn(ϖ1)N (y< 0) =− 1, (3.10b)

sgn(ϖ1)N (y> 0) =− sgn(ϖ1)N (y< 0) . (3.10c)

This corresponds to the first vorticity sign law in both pure modes A and B (Lin et al 2018a,
2018b, 2019a, Lin and Tan 2019, 2022).

Moreover, while the spanwise vorticity in the near wake is taken into account, such as ωz in
the vortex cores in figure 2(a), the vorticity sign relationship of the spanwise vorticity origin-
ally (generated and/or shedding) from the upper and lower shear layers at the same spanwise
position is also summarized as follows:

sgn(ωz)N (y> 0) =− 1, (3.11a)

sgn(ωz)N (y< 0) =+ 1, (3.11b)

sgn(ωz)N (y> 0) =− sgn(ωz)N (y< 0) . (3.11c)

Consequently, the sign relationship of the second sign variable among vorticities, defined
by ϖ2 = ωx ·ωy ·ωz, originally (generated and/or shedding) from the upper and lower shear
layers at the same spanwise position is presented as follows:

sgn(ϖ2)N =−1. (3.12)

This corresponds to the second vorticity sign law in both pure modes A and B (Lin et al 2018a,
2018b, 2019a, Lin and Tan 2019, 2022).

Generally, the vorticity on the rear surface, which is often overlooked in previous studies,
in fact contributes greatly to the spatiotemporal evolution of the vorticity in the near wake of
both pure modes A and B. When additional vorticities are generated on the rear surface due
to 3D instability, such vorticity on the rear surface enters the shear layers either through the
convective transport mechanism of inertial forces or through the vortex-induced vortex mech-
anism of viscous forces, as has been reported previously (Yokoi and Kamemoto 1992, 1993,
Lin and Tan 2019, 2022, Lin et al 2019a, 2019b, Lin 2022). These different physical mechan-
isms correspond to different generation mechanisms of the streamwise or vertical vorticity in
pure mode A or B. Therefore, in the following analysis, we focus mainly on the characteristics
of vorticities and their signs on the rear surface and in the near wake, which are associated with
pure modes A and B, and in particular, the physical relationship between disturbed vorticity
(ωDA) and additional vorticities in pure mode B (ωB) at Re⩾ 193.
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3.3.2. Spatiotemporal symmetry. A type of spatiotemporal symmetry of pure mode A was
observed through the 3D Floquet stability analysis (Barkley and Henderson 1996, Robichaux
et al 1999) of the wakes of circular and square cylinders as follows,

(ωx)AN (t,x,y,z) =− (ωx)AN (t+T/2,x,−y,z) , (3.13a)

(ωy)AN (t,x,y,z) =+ (ωy)AN (t+T/2,x,−y,z) (3.13b)

where T is the time period of vortex shedding and y= 0 is the wake center plane. This phe-
nomenon is also referred to as reflection-translation (RT) symmetry. Similarly, for pure mode
B, the RT symmetry is expressed by

(ωx)BN (t,x,y,z) =+ (ωx)BN (t+T/2,x,−y,z) , (3.14a)

(ωy)BN (t,x,y,z) =− (ωy)BN (t+T/2,x,−y,z) . (3.14b)

Accordingly, for both pure modes A and B, a basic relationship for the combination of ωx
and ωy at a specific space and time can be written as

(ϖ1)N (t,x,y,z) =−(ϖ1)N (t+T/2,x,−y,z) . (3.15)

Several characteristics of this RT symmetry are summarized as follows:

(1) The sign ofϖ1 at y> 0 is always opposite to that at y< 0 after a half T-period translation,
i.e. the odd RT symmetry for ϖ1, expressed by:

sgn(ϖ1)N (t,y) =−sgn(ϖ1)N (t+T/2,−y) . (3.16)

(2) There exist two possible sign combinations on the upper side of the wake center plane, as
an example. For example, one can be sgn(ϖ1)(y) = +1 and the other can be sgn(ϖ1)(y) =
−1. The first sign relationship is consistent with the first sign law, equation (3.10).
However, the second breaks the sign laws and is also not reported elsewhere for either
pure mode A or B. Therefore, the RT symmetry cannot reveal the intrinsic physical rela-
tionship between ωx and ωy in the same space and time.

(3) The intrinsic relationship of ωx or ωy between the upper and lower sides of the wake center
plane illustrated in equation (3.13) or (3.14), respectively, is T periodic. In particular, in
the present pure mode A, the streamwise vorticity obeys an odd RT symmetry, while the
vertical vorticity obeys an even RT symmetry. For pure mode B, these symmetries in ωx
and ωy are opposite to those in pure mode A. This feature clearly demonstrates that there
is no intrinsic physical relationship between the vorticity fields of pure modes A and B.

(4) However, the odd RT symmetry for ϖ1 further indicates that a certain feature exists that
is a type of vorticity relationship between pure modes A and B.

Furthermore, if the RT symmetry of ωz is taken into account, it is expressed by

(ωz)N (t,x,y,z) =−(ωz)N (t+T/2,x,−y,z) . (3.17)

The extended combination of the three vorticity components based on equations (3.15)
and (3.17) is obtained as

(ϖ2)N (t,x,y,z) = +(ϖ2)N (t+T/2,x,−y,z) . (3.18)

13



Fluid Dyn. Res. 55 (2023) 055505 L M Lin

Similarly, some characteristics are presented as follows:

(1) The sign ofϖ2 at y> 0 is always the same as that at y< 0 after a half T-period translation,
i.e. the even RT symmetry for ϖ2, expressed by:

sgn(ϖ2)N (t,y) = +sgn(ϖ2)N (t+T/2,−y) . (3.19)

(2) There remain two possible sign combinations in the near wake, regardless of the upper
or lower side of the wake center plane. One is sgn(ϖ2) = +1, while the other is
sgn(ϖ2) =−1. The second sign relationship is clearly consistent with the second sign law,
equation (3.12). However, the first breaks the second sign law, regardless of pure mode A
or B. This observation further confirms that the RT symmetry cannot reveal the intrinsic
physical relationship among ωx, ωy and ωz at the same space and time.

(3) The even RT symmetry for ϖ2 is also T periodic, which clearly shows that a type of
intrinsic physical relationship between the vorticity fields of (pure) modes A and B truly
exists.

For the present two vorticity sign laws in the near wake, different characteristics are
presented:

(1) The first sign law, equation (3.10), clearly shows an intrinsic physical relationship between
ωx and ωy in both pure modes A and B.

(2) The second sign law, equation (3.12), also demonstrates an intrinsic relationship among
the three components of vorticity for both pure modes A and B.

(3) Intrinsic physical relationships between pure modes A and B are illustrated by the two sign
laws of vorticity given in equations (3.10) and (3.12).

(4) These sign laws are independent of time in the present periodic flow, even in a steady wake
flow of a bluff body under a certain geometric disturbance (Lin et al 2018b, Lin 2020).

In summary, the RT symmetry shows only the individual features for pure mode A or B
under temporal evolution, while the vorticity sign law reveals the intrinsic features of different
vorticity components and the common characteristics between pure modes A and B independ-
ent of time and periodic flow. Therefore, the vorticity sign laws are universal in describing
pure modes A and B.

3.4. Evolution of additional vorticities in the spanwise phase transition

Based on a detailed comparison among the spatiotemporal evolution of the three vorticity
components in the near wake and on the rear surface, as shown in figures 11–20, the complete
transition from pure mode A to mode B in the Reynolds number range from 190 to 330 is
basically divided into four stages. Among these stages, the first stage, i.e. the initial generation
stage of pure mode A, does not show any sign of mode B when Re is below 193 (±0.5) (Lin
2023). In the second stage, when Re is less than 230, pure mode A is fully developed, and
the sign feature of additional vorticities in mode B appears partially in the shear layers and on
the rear surface. Subsequently, the third stage at Re ∈ [230,260∼ 265) indicates that modes
A and B in the near wake coexist in the gradual transition or mode swapping. Finally, when Re
exceeds 265, mode B is completely dominant in the near wake. This general transition process
is consistent with the previous experiments and DNS with LZ = 12 (Williamson 1996a, Jiang
et al 2016).

3.4.1. In the first stage at Re<193. In this stage, the strength of additional vorticities is as
low as approximately O(10−2), as shown in figure 3. This result leads to only the spanwise
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Figure 11. At t= T0 with LZ = 4, top views of isosurfaces of ωx =±0.02 (Re= 190)
and ±0.1 (Re⩾ 195) in the near wake at different Reynolds numbers, where red and
blue colors denote positive and negative values, respectively, and arrows denote (ωx)DA.
Note that the cylinder is denoted by the grey translucent surface and the flow is from left
to right. Particularly, when Re ∈ [230,240], only results with fluid forces at a low level
are presented here.

vortex braids being slightlywavily distorted across the span. However, the primary vortex cores
are still 2D. This effect offers a physical explanation for why the hydrodynamic parameters,
such as CD, C ′

L and St, agree well with those given by a 2D flow simulation (Lin 2022, 2023).
Moreover, the disturbed vorticity ωDA, in which λDA is equal to λA, exhibits a different

vorticity sign on the rear surface at a certain moment. Typically, as shown in figure 5, ωDA

almost disappears at t= T3. However,±|(ωx)DA| and±|(ωy)DA|, denoted by arrows, exist only
in the region of y< 0 at t= T0. The appearance of ±|ωDA| at t= T0 is actually caused by the
expansion or growth of the clockwise spanwise vortex (with −|ωz|) near the upper and rear
surface at t= T3, as shown in figure 21. This expansion causes the vertical vortices (with±|ωy|)
originally distributed on the upper and rear surface to extend downward across the central
position y= 0, based on the fact that sgn(ωy)DA(y< 0) is exactly the same as sgn(ωy)A(y> 0).
Meanwhile,±|(ωx)DA| also satisfies the sign relationship with±|(ωy)DA| on the lower and rear
surface at the same spanwise position, i.e. equation (3.3d). These characteristics in the signs
of ωDA can help exclude features caused by pure mode A and clarify the appearance of pure
mode B in the mode transition.

3.4.2. In the second stage at 193⩽ Re< 230. We note the following labels used in the
figures:

VorX0-U and VorX0-D: (ωx)A (denoted by ‘VorX’) initially generated and/or increasing in
the upper (denoted by ‘U’) and lower/down (denoted by ‘D’) shear layers, respectively.
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Figure 12. At t= T3 with LZ = 4, top views of isosurfaces of ωx =±0.02 (Re= 190)
and±0.1 (Re⩾ 195) in the near wake at different Reynolds numbers (same descriptions
as in figure 11).

VorX1-U and VorX1-D: (ωx)A (denoted by ‘VorX’) concentrated and/or immediately
shedding from the upper (denoted by ‘U’) and lower/down (denoted by ‘D’) shear layers,
respectively.

Similar labels, VorY0-U, VorY0-D, VorY1-U and VorY1-D, are prescribed for (ωy)A
(denoted by ‘VorY’) in the figures.

In this stage, the strength of additional vorticities reaches O(10−1), as shown in figure 4.
This results in both the primary vortex braids and cores being significantly distorted along
the spanwise direction. The near wake is 3D. As shown in figure 22, based on the different
distortion effects of streamwise and vertical interactions (Meiburg and Lasheras 1988, Lin
et al 2018b), the main twisting mechanism of spanwise vortices here can be attributed to the
vertical interaction. Consequently, the hydrodynamic parameters all drop suddenly when Re
exceeds 193 (Lin 2023).

For ωDA, in addition to ωDA with λA mainly distributed near y= 0, similar to that at Re<
193, there is ωDA with a smaller λDA (close to λB) on the rear surface and in the shear layers.
Typically, as shown by the filled arrows in figure 6 on the rear surface at Re= 195,ωDA appears
near one side of y= 0 but at different spanwise positions, such as the position near z= 1.71 at
both times T0 and T3 but the position near z= 3.7 only at T0. λDA changes from 1

4LZ at t= T3

to 1
6LZ at T0.
In the shear layers or the near wake, typically as shown in figure 4 at Re= 195 (see also

figures 11–14), there are three kinds of ωDA with λDA (< λA):
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Figure 13. At t= T0 with LZ = 4, top views of isosurfaces of ωy =±0.01 (Re= 190)
and ±0.1 (Re⩾ 195) in the near wake at different Reynolds numbers, where red and
blue colors denote positive and negative values, respectively, and arrows denote (ωy)DA.
Note that the cylinder is denoted by the grey translucent surface and the flow is from left
to right. Particularly, when Re ∈ [230,240], only results with fluid forces at a low level
are presented here.

(1) The first type is mainly distributed in the (braid) shear layers just beside the cylinder near
specific spanwise positions. Typically, as shown in figure 23, these spanwise positions, i.e.
z= 1.71 and 3.7, are defined as the ‘end’ positions with a spacing of (approximately) 1

2λA,
while other positions between these ‘end’ positions, e.g. 1.71< z< 3.7, are defined as the
‘middle’ positions. The sign of ωDA is opposite to that of ωA. By comparing the spanwise
position of ωDA on the rear surface and in the shear layers, as shown in figures 4, 6 and 23,
ωDA primarily appears near both ‘end’ positions. Meanwhile, λDA1 (approximately 1

6LZ) in
the lower shear layer at t= T3 in figure 23 is actually correlated with that on the rear surface
at t= T2, similar to that in figure 6 at t= T0. Notice that (ωy)DA near both z= 1.71 and 3.7
and (ωx)DA near z= 3.7 originate from those in the lower shear layer, while (ωx)DA near
z= 1.71 could be initially induced by the vortex-induced vortex mechanism (i.e. ±|ωx|
induced by ∓|ωy|, respectively) by viscous forces or the convective transport and vortex-
stretching mechanism by inertial forces (Lin and Tan 2019, 2022).

(2) The second type occurs within the range of λDA2 from 1
5LZ to 1

3LZ at the ‘middle’ posi-
tions and causes spanwise waviness in the isosurfaces of additional vorticities in the near
wake. Typically, as illustrated in figures 4 and 23, isosurfaces of ±|ωy| have wavy char-
acteristics at the ‘middle’ region of 1.71< z< 3.7 in the (braid) shear layers and the near
wake, which are different from those at Re= 190 in figure 3(b). The physical reason for
this distinction is attributed to the superposition of vorticity with (at least) three different
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Figure 14. At t= T3 with LZ = 4, top views of isosurfaces of ωy =±0.01 (Re= 190)
and±0.1 (Re⩾ 195) in the near wake at different Reynolds numbers (same descriptions
as in figure 13).

wavelengths across the span, such as LZ = 4, 1
4LZ = 1 and 1

5LZ = 0.8, as analyzed qualit-
atively in appendix A. This feature of the wavy isosurface in both shear layers indicates
that the present kind of disturbed vorticity with a wavelength λDA2 of 0.8 or 1 is already
generated and exists across the span.

(3) The third type is mainly distributed in the first (immediately) shedding primary vortex
with λDA3 around 1

4LZ near the ‘end’ positions. It typically appears as ‘rib’-like contours
of ωx and ωy in figures 24 and 25 at Re< 230. ωDA is quickly weakened and disappears
when the first primary vortex is further shedding far away from the body. The specific
spanwise positions are consistent with those of ωDA on the rear surface of the cylinder,
such as z= 1.46 at t= T0 and Re= 195, as shown in figures 6 and 24, and z= 0.3 at t= T3

and Re= 220, as shown in figures 16(e) and 25, and are also consistent with those of
the first kind of ωDA, such as near z= 1.71 illustrated in figure 23. Therefore, the third
kind actually originates from the first kind further shedding with the alternately shedding
primary vortex, in which the increase in λDA from λDA1 to λDA3 is possibly caused by the
viscous diffusion coupling the nonlinear vortex stretching effect.

Through the comparison of additional vorticities, we determined that the above ωDA dis-
tributed on the rear surface and in the shear layers or the near wake conforms to some charac-
teristics of pure mode B in the smaller spanwise wavelength and the vorticity sign relationship.
For example, in the near wake, as shown in figures 24 and 25 at the same spanwise position,
sgn(ωx)DA is the same as that in the upper shear layer, while sgn(ωy)DA is the opposite of
that in the upper shear layer, which agrees well with equation (3.5). In summary, these res-
ults strongly support that pure mode B actually appears initially on the rear surface and the

18



Fluid Dyn. Res. 55 (2023) 055505 L M Lin

Figure 15. At t= T0 with LZ = 4, contours of ωx on the rear surface at different
Reynolds numbers, where red and blue colors denote positive and negative values,
respectively, green color denotes vorticity almost zero (|ωx|< 10−3), and arrows denote
(ωx)DA. Particularly, when Re ∈ [230,240], only results with fluid forces at a low level
are presented here.

Figure 16. At t= T3 with LZ = 4, contours of ωx on the rear surface at different
Reynolds numbers (same descriptions as in figure 15).
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Figure 17. At t= T0 with LZ = 4, contours of ωy on the rear surface at different
Reynolds numbers, where red and blue colors denote positive and negative values,
respectively, green color denotes vorticity almost zero (|ωy|< 10−3), arrows denote
(ωy)DA, and dotted dash lines denote the center position y= 0. Particularly, when
Re ∈ [230,240], only results with fluid forces at a low level are presented here.

Figure 18. At t= T3 with LZ = 4, contours of ωy on the rear surface at different
Reynolds numbers (same descriptions as in figure 17).
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Figure 19. At t= T0 with LZ = 4, top views of isosurfaces of ωz =±0.2 in the near
wake at different Reynolds numbers, where red and blue colors denote positive and
negative values, respectively. Particularly, when Re ∈ [230,240], only results with fluid
forces at a low level are presented here.

shear layers or the near wake when Re exceeds 193 without any effect of vortex dislocations.
Therefore, this stage is also referred to as the initially generated stage of pure mode B.

As noted in previous work (Henderson 1997), the Fourier mode with a modulus number of
1 corresponding to (pure) mode A (λA = LZ = 4 here) is the most unstable modulus in mode
competition with different moduli. Moreover, other higher moduli with larger wavenumbers
are excited under the strong nonlinear interaction. In the present study, these higher moduli
indicate the appearance of wavily ωDA, as well as wavy variation in ωA, with smaller λDA or
λB (< LZ here) on the rear surface and in the near wake. However, because of these relative
weaknesses in ωDA associated with pure mode B, hydrodynamic parameters at Re< 230 still
cannot reflect their influence (Lin 2023). Such a phenomenon is similar to the existence of
pure mode A in the initial generation stage at Re< 193.

3.4.3. The third stage at 230⩽ Re< 260∼ 265. In this stage, as reported in our previous
work (Lin 2023), there is a gradual transition or mode swapping between pure modes A and
B that obviously appears in the near wake. In such mode swapping, there are several vortex-
shedding patterns, such as the coexistence of pure modes A and B at different streamwise
positions. Two substages are identified based on the characteristics of the fluid forces and
vortex-shedding patterns.

In the first substage at Re ∈ [230,240], as also reported in previous work (Lin 2023), there
are fluid forces at low and high levels, denoted by ‘LF’ and ‘HF’, associated with the low and
high vortex-shedding frequencies, respectively. Their alternative or intermittent appearance in
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Figure 20. At t= T3 with LZ = 4, top views of isosurfaces of ωz =±0.2 in the near
wake at different Reynolds numbers (same descriptions as in figure 19).

Figure 21. At z= 1
4LZ and Re= 190 with LZ = 4, contours of ωz =±0.1 and ±0.5 at

(a) t= T0 and (c) T3, and streamlines at (b) t= T0 and (d) T3 near the rear surface, where
solid and dashed lines in contours denote positive and negative values, respectively. Note
that the circular-section cylinder is denoted by the grey circle.

the time histories of fluid forces is closely associated with the mode swapping between modes
A and B in the near wake.

As shown in figures 11–14, the vortex-shedding patterns at LF are mainly described by
pure mode A. Furthermore, as shown in figures 15 and 17, ωDA with the smaller λDA, which
is associated with mode B, still appears partially on the rear surface and in the shear layers,
similar to that in the second stage.

However, in the near wake at the HF, there are different vortex-shedding patterns:

(1) Typically, as shown in figures 26–28, only pure mode A appears in the near wake (almost)
without any sign of mode B at a certain moment.
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Figure 22. At Re= 195 with LZ = 4, top views of isosurfaces of ωz =±0.2 in pure
mode A at (a) t= T1 and (b) T2, where red and blue colors denote positive and neg-
ative values, respectively. Note that 2D or 1.8D and 0.8D are the distortion spacings
along streamwise and vertical directions due to the vertical and streamwise interactions,
respectively.

Figure 23. At t= T3, Re= 195 and LZ = 4, bottom views of isosurfaces of (a) ωx =
±0.02 and (b) ωy =±0.02, where red and blue colors denote positive and negative val-
ues, respectively, and arrows at x< 4 denote±|ωDA| with λDA ∼ 1

6LZ near z= 1.71 and
3.7 (see also in figure 6) and λDA ∼ 1

5LZ elsewhere. Note that the cylinder is denoted by
the grey translucent surface and the flow is from left to right.

Figure 24. At t= T0, Re= 195 and LZ = 4, contours of (a) ωx and (b) ωy at z= 1.46,
and (c) ωx at x= 4, where solid and dashed contour lines of ωz =±0.1 and ±0.5
denote positive and negative values, respectively, and arrows with black filled arrow-
heads denote ±|ωDA| with λDA ∼ 1

4LZ.

(2) At other moments, the mixed mode occurs. For example, as shown in figure 29, pure mode
A is dominant, but some features in mode B also appear in the shear layers and the first
shedding primary vortex, similar to the case at Re< 230. As shown in figure 30, modes A
and B coexist at different streamwise positions, and wavy features with smaller spanwise
wavelengths due to mode B obviously appear in the shear layers. As shown in figure 31,
pure mode B mainly exists in the shear layers and the first shedding primary vortex, while
pure mode A mainly appears in the near wake of x> 5.5∼ 7.5.

(3) Sometimes, as shown in figure 32, only pure mode B with λB = 1
5LZ exists in the near

wake.
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Figure 25. At t= T3, Re= 220 and LZ = 4, contours of (a) ωx and (b) ωy at z= 0.3,
and (c) ωx at x= 3 (same descriptions as in figure 24).

Figure 26. At t= 1865.5 (T0) (HF), top views of isosurfaces of (a) ωx =±0.1,
(b) ωy =±0.1 and (c) ωz =±0.2 in the near wake at Re= 230 with LZ = 4, and con-
tours of (d) ωx and (e) ωy on the rear surface, where red and blue colors denote positive
and negative values, respectively, and green color in contours denotes |ω|< 10−3, and
arrows denote ωDA with λDA = LZ, just as in figure 5. Note that the cylinder is denoted
by the grey translucent surface and the flow is from left to right in isosurfaces.

Figure 27. At t= 2242 (T3) (HF), top views of isosurfaces of (a) ωx =±0.1,
(b) ωy =±0.1 and (c) ωz =±0.2 in the near wake at Re= 235 with LZ = 4, and con-
tours of (d) ωx and (e) ωy on the rear surface (same descriptions as in figure 26).

Meanwhile, for vorticity distributed on the rear surface at HF, mainly in the mixed mode
and only pure mode B as stated above in figures 29–32, ωDA associated with mode B at
|y|< 0.17∼ 0.3 is also in a gradual transition: distribution only on one side of y= 0 to that
on both sides at the same spanwise position mainly with λB < LZ, therefore satisfying the
sign relationship equation (3.6). Particularly, in the case of the mixed mode, there is a new
transitional phenomenon in which ωDA with different λDA varying from λB to LZ still satisfies
the sign relationship of pure mode B in equation (3.6), e.g. at |y|> 0.17∼ 0.27 in figures 29
and 30 and |y|⩽ 0.5 in figure 31, referred to as the wavelength modulation of pure mode B.
The occurrence of this phenomenon only interferes with and even inhibits the generation of
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Figure 28. At t= 2044.5 (T0) (HF), top views of isosurfaces of (a) ωx =±0.1,
(b) ωy =±0.1 and (c) ωz =±0.2 in the near wake at Re= 240 with LZ = 4, and con-
tours of (d) ωx and (e) ωy on the rear surface (same descriptions as in figure 26).

Figure 29. At t= 2210.5 (T2) (HF), top views of isosurfaces of (a) ωx =±0.1,
(b) ωy =±0.1 and (c) ωz =±0.2 in the near wake at Re= 235 with LZ = 4, and con-
tours of (d) ωx and (e) ωy on the rear surface, where arrows with hollow arrowheads
denote the appearance of mode B with λB approximately 0.8∼ 0.9, and arrows with
filled arrowheads denote ωDA on the rear surface mainly due to mode B.

Figure 30. At t= 2401 (T0) (HF), top views of isosurfaces of (a) ωx =±0.1,
(b) ωy =±0.1 and (c) ωz =±0.2 in the near wake at Re= 235 with LZ = 4, where
arrows with hollow arrowheads denote the appearance of mode B with λB approxim-
ately 1, and contours of (d) ωx and (e) ωy on the rear surface, where arrows with filled
arrowheads denote ωDA due to mode B, while arrows with plain arrowheads denote ωDA

owing to pure mode A, like that in figure 5.

ωA on and near the rear surface, even in the braid shear layers. However, in the case of only
pure mode B, some sign features in pure mode A are only demonstrated in a local region on
the rear surface, i.e. equation (3.3) at |y|> 0.3.

In the second substage at 240< Re< 260∼ 265, as presented in previous work (Lin 2023),
only fluid forces at a high level with a high vortex-shedding frequency exist in the time histor-
ies. For the vortex-shedding pattern, typically as shown in figures 11 and 12, the above mixed
mode still exists. For example, at Re= 250 and t= T0, pure mode A is obviously dominant in
the alternately shedding primary vortices. In the shear layers, there is ωDA with smaller λDA. At
t= T3, in the shear layers and first shedding primary vortex, pure mode B with λB = 1 is dom-
inant, while some features in pure mode A remain further downstream. However, at Re= 255,
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Figure 31. At t= 1876.5 (T2) (HF), top views of isosurfaces of (a) ωx =±0.1,
(b) ωy =±0.1 and (c) ωz =±0.2, where arrows denote the appearance of mode B with
λB approximately 1, and bottom views of isosurfaces of (d) ωx =±0.1, (e) ωy =±0.1
and (f ) ωz =±0.2 in the near wake at Re= 240 with LZ = 4, and contours of (g) ωx

and (h) ωy on the rear surface.

Figure 32. At t= 2415.5 (T0) (HF), top views of isosurfaces of (a) ωx =±0.1,
(b) ωy =±0.1 and (c) ωz =±0.2 in the near wake at Re= 240 with LZ = 4, and con-
tours of (d) ωx and (e) ωy on the rear surface, where arrows denote ωDA caused by mode
B with λB ∼ 0.8.

the above characteristics are opposite, i.e. mode A dominant in the shedding primary vortices
at t= T3 and mode B dominant in the shear layers at t= T0.

For vorticity distributed on the rear surface, as shown in figures 15–18, similar features in
the first substage (the mixed mode) at HF stated above are still valid here. For example, at
t= T0, ωDA due to mode B is distributed mainly on one side of y= 0 at Re= 250 and then on
both sides at Re= 255, at which ωA mainly exists in the local region |y|> 0.25. Particularly,
on the whole rear surface |y|⩽ 0.5, the wavelength modulation of pure mode B also occurs at
T0 when 255⩽ Re⩽ 265 and T3 when 250⩽ Re⩽ 260. At this point, the physical mechanism
in the formation of pure mode A in the wall and shear layers is completely disturbed or even
suppressed.

3.4.4. The fourth stage at Re⩾ 260∼ 265. In this stage, as shown in figures 11–14, the
near wake is always described by pure mode B with λB of 1

5LZ = 0.8 at Re< 290 and
1
4LZ = 1 at Re⩾ 310. Interestingly, at 290⩽ Re< 310, pure mode B coexists with two differ-
ent wavelengths, such as approximately 0.89 at t= T0 and Re= 290 and 300, but approxim-
ately 0.8 at t= T3 and Re= 290 and 1 at Re= 300. As shown in figure 33, the wavy spanwise
vortex is mainly attributed to this streamwise interaction (Meiburg and Lasheras 1988, Lin and
Tan 2022).
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Figure 33. At Re= 310 with LZ = 4, top views of isosurfaces of ωz =±0.2 in pure
mode B at (a) t= T1 and (b) T2, where red and blue colors denote positive and negat-
ive values, respectively. Note that 0.25D or 0.4D and 0.6D are the distortion spacings
along streamwise and vertical directions due to the vertical and streamwise interactions,
respectively.

Figure 34. Sketches of vortex lines for pure modes A and B projected in the (y, z) plane,
where arrows with hollow arrowheads denote the spanwise vortex distorted along the
y-axis.

For the vorticity distribution on the rear surface, typically as shown in figures 15 and 17,
similar features at t= T0 are presented. In the first feature, at Re< 290 and Re> 300, the
vorticity sign relationship of pure mode B, equation (3.6), becomes dominant and is mainly
distributed on both sides of y= 0 at the same spanwise position, while the vorticity sign rela-
tionship equation (3.3), as ωDB, is only in the local region, e.g. |y|> 0.3. In the second fea-
ture, at 290⩽ Re⩽ 300, there is a mixed case: at a certain spanwise position, ωB extends to
y=±0.5; or at other spanwise position, ωB confined in the region approximately |y|< 0.33
coexists with ωDB in the region |y|> 0.33.

3.4.5. Spanwise phase change in pure modes A and B. As reported in previous works
(Lin et al 2018a, Lin and Tan 2022, Lin and Wu 2022), pure modes A and B can be described
by alternately shedding Π− and Π+ vortices. In the Π-type vortex, the head ‘—’ denotes the
(wavy) spanwise vortex, while the two legs ‘| |’ denote additional vorticities with the span-
wise wavelength λ. Among them, the Π− vortex is defined as the following vorticity sign
combinations, (+|ωx|,+|ωy|,−|ωz|) at z= 1

4λ and (−|ωx|,−|ωy|,−|ωz|) at z= 3
4λ, originally

shedding from the upper shear layer. The Π+ vortex is defined by the following vorticity
sign combinations, (−|ωx|,+|ωy|,+|ωz|) at z= 1

4λ and (+|ωx|,−|ωy|,+|ωz|) at z= 3
4λ, ori-

ginally shedding from the lower shear layer. Generally, when λ= λA, these Π− and Π+ vor-
tices alternately shedding in phase across the span can be used to describe the pure mode A,
i.e. (+|ωx|,+|ωy|,−|ωz|) and (−|ωx|,+|ωy|,+|ωz|) at the same spanwise position or z= 1

4λA

here. However, when λ= λB, pure mode B can be illustrated by Π− and Π+ vortices altern-
ately shedding out of phase across the span, i.e. (+|ωx|,+|ωy|,−|ωz|) and (+|ωx|,−|ωy|,+|ωz|)
at the same spanwise position or z= 1

4λB. As shown in figure 34, based on the streamwise
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interaction (Meiburg and Lasheras 1988), the term ‘in phase’ in pure mode A indicates that the
direction of primary vortex distortion detached from the upper and lower shear layers points to
the position of y= 0 (the wake center plane) at the same spanwise position, while the term ‘out
of phase’ in pure mode B illustrates that the distortion direction of alternately shedding span-
wise vortices points to y= 0 at different spanwise positions with a spanwise phase difference
of λB/2.

According to the above analysis, especially in the second stage at 193⩽ Re< 230 and the
third stage at 230⩽ Re< 260∼ 265, the spanwise phase change from the originally dominant
pure mode A to the gradual appearance of pure mode B as a kind of disturbance is explained
as follows:

(1) At the ‘end’ spanwise position, such as (y= 0,z= 1.71) in figure 6(a), near which ωA is
weak (almost disappears), any disturbance can easily lead to the generation of ωDA.

(2) After ωDA is generated, its sign is exactly opposite to that of ωA, and its λDA is almost
similar to λB at high Reynolds numbers, which indicates that the modulus of pure mode
B appears partially on the rear surface. Note that the above two points are supported by
similar analysis in appendix A, such as the appearance of ωDA near z= 2 in figures 38(b)
and (d).

(3) A similar phenomenon with opposite signs between ωA and ωDA also occurs in the near
wake. For example, as shown in figures 23–25, at the same spanwise position, there is
a dominant distribution with (+|(ωx)A|,+|(ωy)A|,−|ωz|) in the upper shear layer due to
pure mode A and a disturbance distribution with (+|(ωx)DA|,−|(ωy)DA|) owing to mode
B, instead of the distribution with (−|(ωx)A|,+|(ωy)A|) in pure mode A. Moreover, such
ωDA moves into the lower side of the wake center plane, as shown by arrows in the far
wake in figure 23.

(4) For these ωDA, although λDA is mainly determined by pure mode B, the Π− and Π+ vor-
tices near the ‘end’ positions alternately shed in phase across the local span until Re is
less than 235∼ 240, such as z∼ 1.71 at Re= 195 and z∼ 1.25 at Re= 200, as shown
in figures 23 and 11. Meanwhile, at the ‘middle’ positions, ωA is gradually disturbed in
both time and space by those ωDA associated with pure mode B. Then, as the wavelength
modulation of pure mode B on the rear surface finally appears in the mixed mode when
Re exceeds 235∼ 240, the Π− and Π+ vortices with λB alternately shed out of phase, as
shown in figure 31. This process appears to be the spanwise expansion of pure mode B first
near the ‘end’ positions and then at the ‘middle’ positions. The spanwise phase transition
is basically completed.

(5) When Re increases from 195 to 265, ωDA associated with pure mode B appears on both
sides of y= 0 on the rear surface and also in both the upper and lower shear layers at the
same spanwise position.

3.5. Critical Reynolds numbers

As stated in previous work (Lin 2023) and the above analysis, it is not entirely appropriate to
use the St−Re relationship to determine the critical Reynolds number at which mode B occurs
in different stages. This limitation occurs because at high Reynolds numbers, the coexistence
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of pure modes A and B is observed in the near wake, as is the appearance of mode A through
time histories with high levels of fluid forces and high vortex-shedding frequency.

Based on the RMS lift coefficient over time, some definitions of vorticity intensities on the
basis of volume integrals proposed in previous work (Lin 2022) are adopted as follows. The
volume-averaged streamwise and vertical vorticities, ωx and ωy, respectively, and the volume-
RMS streamwise vorticity, ω ′

x , volume-RMS vertical vorticity, ω ′
y , and volume-RMS addi-

tional vorticity, ω ′
xy, are defined as:

ωx (t) =
1
V

ˆ
V
ωxdτ ≈ 0, (3.20a)

ωy (t) =
1
V

ˆ
V
ωydτ ≈ 0, (3.20b)

ω ′
x (t) =

√
1
V

ˆ
V
(ωx−ωx)

2 dτ ≈

√
1
V

ˆ
V
ω2
xdτ , (3.21a)

ω ′
y (t) =

√
1
V

ˆ
V
(ωy−ωy)

2 dτ ≈

√
1
V

ˆ
V
ω2
ydτ , (3.21b)

ω ′
xy (t) =

√
1
V

ˆ
V

[
(ωx−ωx)

2
+(ωy−ωy)

2
]
dτ =

√
ω ′2

x +ω ′2
y (3.21c)

where V is the volume of the flow field of interest (i.e. the whole computational domain) and
dτ is the volume element. The volume integral includes all possible moduli associated with
pure modes A and B appearing in the whole wake.

Using the above variables and the aforementioned vortex shedding phenomena, the follow-
ing critical Reynolds numbers in both pure modes A and B can be obtained.

Through precise computations with a small calculated interval of the Reynolds number,
δRe, there are two critical Reynolds numbers in pure mode A, as shown in figure 35. The
first critical Reynolds number, ReAcr0, is 141 (±0.5) with δRe= 1. This indicates that natural
three dimensionality first appears on the cylinder surface, particularly on the rear surface near
the wake center plane y= 0. This intrinsic three dimensionality leads to the generation of
additional vorticities on the rear surface. The spanwise wavelength of these surface vorticities
is the same as that of pure mode A, i.e. λA = 4. The second critical Reynolds number, ReAcr1,
is 193 (±0.5) with δRe= 1, which indicates the fully developed stage of pure mode A in the
near wake (Lin 2022, 2023).

However, for mode B, computations with different LZ are executed, as shown in figure 35.
When LZ = 1, there is only one stage in which pure mode B appears with the critical Reynolds
numbers ReBcr of 299. However, when LZ = 4, based on the above vorticity analysis, there are
at least four stages. As shown in figure 35, the first critical Reynolds number ReBcr0 = 193
(±0.5) indicates that pure mode B is initially generated in the flow. The three volume-RMS
vorticities gradually increase when 193⩽ Re< 230. The second critical Reynolds number
ReBcr1 = 230 (±2.5) indicates that the appearance of mode B has an important effect on fluid
forces and vortex-shedding frequency in a gradual transition or mode swapping. All volume-
RMS vorticities wavily decrease when 230⩽ Re< 260∼ 265 until pure mode A totally dis-
appears in the near wake, as shown in figure 35. The third critical Reynolds number ReBcr2 =

29



Fluid Dyn. Res. 55 (2023) 055505 L M Lin

Figure 35. Relationship between the volume-RMS vorticity and Reynolds number,
where symbols of □, △ and ▽ denote ω ′

x , ω
′
y and ω ′

xy expressed by equation (3.21),
respectively, based on figures 11–14.

Figure 36. At Re= 290 with LZ = 2, (a) time histories of fluid forces and top views
of isosurfaces of (b) ωx =±0.1, (c) ωy =±0.1 and (d) ωz =±0.2 in pure mode B at
t= 996 (T0), where red and blue colors denote positive and negative values, respectively.
Note that the cylinder is denoted by the grey translucent surface and the flow is from
left to right in isosurfaces.

262.5 (±2.5) indicates that pure mode B is in a stage of self-adjustment of λB from 0.8 to
1. When 265⩽ Re< 310, volume-RMS vorticities gradually increase. Interestingly, a similar
phenomenon also appears with LZ = 2, in which λB varies from 2/3 at 286⩽ Re< 310 to 1 at
Re= 310, as shown in figures 36 and 37. The fourth critical Reynolds number ReBcr3 = 310
(±5) indicates that pure mode B is fully developed with λB = 1, which is consistent with those
at LZ = 1 and 2 in the variation of volume-RMS vorticities, as shown in figure 35 at Re⩾ 310.

Moreover, from the perspective that puremode B appears in the entire near wake, it is appro-
priate that ReBcr can be determined by ReBcr2, which agrees with the values of 259 and 261
(±0.2) predicted by Barkley and Henderson (1996) and Posdziech and Grundmann (2001),
respectively. Then, as LZ increases, ReBcr gradually decreases, i.e. 299 (LZ = 1), 286 (LZ = 2)
and 262.5 (LZ = 4). This feature shows that with the gradual relaxation of the periodic con-
straint, that is, the gradual increase of finite LZ, the Fourier mode corresponding to pure mode
B for the entire wake becomes more easily excited at lower Reynolds numbers.
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Figure 37. At Re= 310 with LZ = 2, (a) time histories of fluid forces and top views
of isosurfaces of (b) ωx =±0.1, (c) ωy =±0.1 and (d) ωz =±0.2 in pure mode B at
t= 996.5 (T0) (same descriptions as in figure 36).

4. Conclusions

In this paper, the spanwise phase transition from pure mode A to mode B in the wake of
a circular cylinder is investigated through DNS in the absence of vortex dislocations. As the
second part of this study, the spatiotemporal evolution of the vorticity on the rear surface of the
cylinder and in the near wake is illustrated in the Re range from 190 to 330with a computational
spanwise length LZ of 4.

By comparing the features of the vorticity signs in pure modes A and B, relevant spanwise
phase transitions are determined as follows:

(1) For pure mode A with wavelength λA = 4, the first critical Reynolds number ReAcr0 is 141
(±0.5). When Re exceeds ReAcr0 as the initially generated stage, the three dimensionality
associated with pure mode A appears first on the rear surface, then in the shear layers
and finally in the alternately shedding primary vortices (Lin 2022). The second critical
Reynolds number ReAcr1 is 193 (±0.5). When Re⩾ ReAcr1, pure mode A is in the fully
developed stage. The Π− and Π+ vortices associated with mode A alternately shed in
phase across the span.

(2) For pure mode B, the first critical Reynolds number ReBcr0 is 193 (±0.5). When Re⩾
ReBcr0 at the initially generated stage, some features of the vorticity sign in mode B, as a
type of weak disturbed vorticity with opposite signs in a wavelength range from approxim-
ately 1

6LZ to 1
3LZ, partially appear on the rear surface and in the shear layers near the ‘end’

positions. At a certain spanwise position, a part of mode A and a part of mode B coexist,
e.g. theΠ− vortex in mode A and theΠ+ vortex with specific signs in mode B. TheΠ− and
Π+ vortices associated with mode B alternately shed in phase across the span, exactly the
same as those in pure mode A. The second critical Reynolds number ReBcr1 is approxim-
ately 230 (±2.5). When Re exceeds ReBcr1, a gradual increase in additional vorticities in
mode B leads to mode swapping, such as modes A and B coexisting at different streamwise
or spanwise positions. With the appearance of the wavelength modulation of pure mode B
at the ‘middle’ positions, theΠ− andΠ+ vortices associated with mode B alternately shed
out of phase across the span. The third critical Reynolds number ReBcr2 is approximately
262.5 (±2.5). When Re⩾ ReBcr2, pure mode B is dominant in the near wake. The resulting
spanwise wavelength λB is gradually changed from 0.8 to 1. The fourth critical Reynolds
number ReBcr3 is approximately 310 (±5). When Re⩾ ReBcr3, pure mode B is in the fully
developed stage with λB = 1, which is well consistent with that with LZ = 1 and 2.
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In our future works, the effect of vortex dislocations on this spanwise phase transition will
be further investigated.
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Appendix A. Analysis of vorticity with λA and λDA at Re < 230

Here, to illustrate the physical relationship between the spanwise waviness in the vorticity
ω (i.e. ωx or ωy) isosurface and the spanwise wavelength of additional vorticities associated
with pure modes A and B, a qualitative analysis is carried out. The reason is that it is difficult
to distinguish and display ωA and ωDA in the vorticity isosurfaces individually. Therefore, a
simple superposition of vorticity with different spanwise wavelengths is adopted.

Without losing generality or for the convenience of simplicity, some preconditions are
assumed or prescribed as follows:

(1) Only two wavelengths are taken into account, although there are many other moduli
appearing in the spatiotemporal evolution due to nonlinear interactions.

(2) Two different spanwise wavelengths are λA and λDA due to pure modes A and B,
respectively.

(3) ωA with λA = 4 is dominant, while ωDA with λDA from 1
6LZ to 1

3LZ is subordinate when
LZ = 4. Here, the modulus m of ωDA is defined as m= LZ/λDA. Consequently, m= 3, 4, 5
and 6 are considered based on the aforementioned analysis of the spatiotemporal evolution
of vorticity.

(4) Therefore, the vorticity ω showing the spanwise waviness feature is assumed to be the
linear superposition of vorticities ωA and ωDA, i.e. ω = ωA +ωDA.

(5) As shown in figure 3 or 4 at Re< 230, the spanwise variation in ωA with opposite signs
can be expressed by the periodic sine function, i.e. ωA = aA sin( 2π zλA

), where aA is the peak
amplitude of ωA across the span.

(6) Due to the unknown variation inωDA withλDA, two possible distributions are assumed first,
i.e. ωDA = aDA sin( 2π z

λDA
) and aDA cos( 2π z

λDA
) without the spanwise phase difference from ωA,

where aDA is the peak amplitude of ωDA across the span. Furthermore, as shown in figure 4,
at specific spanwise positions, ω = ωx = ωy = 0. Accordingly, at z= 0 and 1

2λA = 2, ωA =

0, but ωDA = aDA cos( 2π z
λDA

) = aDA cos( 2πmzLZ
) ̸= 0, which leads to ω ̸= 0. As a result, only

sinusoidal variation in ωDA is analyzed.
(7) To be consistent with the analysis of the phase transition, two positions, z= 0 orλA = 4 and

1
2λA = 2, are defined as the ‘end’ positions in figure 6 or 23, while the spanwise positions,
i.e. 0< z< 2 and 2< z< 4, are defined as the ‘middle’ positions.

As shown in figures 38 and 39, ωDA with the present moduli results in the intensity of ω
varying across the span. By comparing figures 4 and 23 or 11 and 13, there are two situations in
the spanwise waviness of vorticity isosurfaces at the ‘middle’ positions, typically as shown in
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Figure 38. Amplitudes of ω, ωA with aA = 1 and ωDA with aDA = 0.5 along the span-
wise direction with different moduli (a) m= 3, (b) 4, (c) 5 and (d) 6, where solid
lines (—), dashed lines (− − −) and dotted-dash lines (− ·−) denote ω, ωA and ωDA,
respectively.

Figure 39. Amplitudes of ω, ωA with aA = 1 and ωDA with aDA =−0.5 along the
spanwise direction with different moduli (a) m= 3, (b) 4, (c) 5 and (d) 6, where solid
lines (—), dashed lines (− − −) and dotted-dash lines (− ·−) denote ω, ωA and ωDA,
respectively.

figure 23(b). The first is the one ‘W’-like wavy shape in the ω (e.g. ωy) isosurfaces, except the
boundary of ω with a constant sign near the two ‘end’ positions. Only the case in figure 38(c)
can reflect such ‘W’-like waviness with this boundary. The second is the one ‘V’-like wavy
shape in the ω isosurfaces. If the condition that sgn(ωDA) =−sgn(ωA) exists near two ‘end’
positions is considered, only the case in figure 39(c) is satisfied. If this condition disappears,
only the case in figure 38(a) with the boundary of ω at the unvaried sign is suitable. On the
other hand, the asymmetric wavy shape of z= 0.7 and 2.7 in figure 23(b) indicates that the two
cases in figures 38(b) and 39(b) could exist mainly in the ‘middle’ region, e.g. 1.71< z< 3.7
in figure 23(b). Therefore, the spanwise waviness in the ω isosurfaces is mainly determined
by the modulus of 5 with λDA = 1

5LZ coupled with the weak modulus of 4 with λDA = 1
4LZ,

as shown in figure 40. The moduli of 3 and 6 could appear locally near specific positions
at a certain time. Typically, the asymmetric ‘V’-like waviness can be well described by the
superposition in figure 40(b) with the condition sgn(ω) =−sgn(ωA) near z= 0 and 2, while
the asymmetrical ‘W’-like wavy shape can be explained by the superposition in figure 40(c)
with the condition of ω with the unvaried sign near z= 0 and 2.

Finally, figure 41 shows that the relative magnitude (aDA/aA) of ωDA should reach at
least 0.3 once the specific condition, i.e. sgn(ωDA) = +sgn(ω) =−sgn(ωA) near the ‘end’
position, e.g. z= 2, is satisfied. Furthermore, this specific condition indicates that ωDA with
the sign opposite to the sign of ωA first appears near z= 2, where ωA is weak enough
(almost zero).
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Figure 40. Amplitudes of ω, ωA with aA = 1 and ωDA with two moduli (a) aDA =−0.5
(m= 4) and aDA =−0.5 (m= 5), (b) aDA =−0.1 (m= 4) and aDA =−0.5 (m= 5),
and (c) aDA = 0.3 (m= 4) and aDA = 0.5 (m= 5), along the spanwise direction, where
solid lines (—), dashed lines (− − −) and dotted-dash lines (− ·−) denote ω, ωA and
ωDA, respectively.

Figure 41. Amplitudes of ω, ωA with aA = 1 and ωDA with (a) aDA = 0.1, (b) aDA = 0.3
and (c) aDA = 1 along the spanwise direction with the modulus of m= 4, where solid
lines (—), dashed lines (− − −) and dotted-dash lines (− ·−) denote ω, ωA and ωDA,
respectively.
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