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A relation among invariants of filtered velocity gradients with two different filter sizes
is derived. Based on this relation and physical reasoning, it is shown analytically that
strain self-amplification contributes more to energy transfer than vortex stretching in
homogeneous turbulence, as observed in recent numerical investigations of homogeneous
isotropic turbulence. We note that the invariant relation studied and hence the inequality
between strain self-amplification and vortex stretching apply to all homogeneous flows,
not restricted to isotropic turbulence.
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1. Introduction

Turbulence is a nonlinear, multi-scale and dissipative system. In three-dimensional
turbulent flows, the energy is injected at large scales, gradually transfers to smaller
scales and ultimately dissipates at the smallest scales of the system. This energy cascade
picture was first phenomenologically introduced by Richardson (1922) and later developed
theoretically by Kolmogorov, which led to the celebrated K41 theory (Kolmogorov
1941a,b). Nowadays, energy cascade is regarded as one of the hallmarks of turbulence
and has been widely discussed in the literature (Tennekes & Lumley 1972; Frisch
1995; Pope 2000; Davidson 2015; He, Jin & Yang 2017). Among studies of energy
cascade, an insightful approach is to discuss the properties of the filtered velocity
gradient tensor (FVGT) (Borue & Orszag 1998; Tao, Katz & Meneveau 2000, 2002;
van der Bos et al. 2002; Higgins, Parlange & Meneveau 2003; Leung, Swaminathan
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& DaVidson 2012; Fiscaletti et al. 2016a,b; Danish & Meneveau 2018; Johnson 2021),
as FVGTs are closely related to velocity increments (Eyink 1995) and represent flow
motion at filter scales. Specifically, the symmetric and antisymmetric parts of the velocity
gradient, that is, the strain rate and vorticity, represent the deformation and the rotation
of the fluid parcel, respectively. A long-standing concept in turbulence dynamics is
that vortex stretching (VS) drives the energy cascade (Taylor 1937, 1938; Tennekes &
Lumley 1972; Pullin & Saffman 1998; Davidson 2015; Doan et al. 2018). Recently, the
self-amplification of straining motion has been proposed as an alternative mechanism
of energy cascade (Tsinober 2009; Carbone & Bragg 2020; Johnson 2020, 2021). In
particular, by studying the energy transfer term in the Kármán–Howarth equation, Carbone
& Bragg (2020) provided evidence that strain self-amplification (SSA) dominates over VS
in energy cascade. Johnson (2020) derived an exact relation between the subgrid-scale
(SGS) stress tensor and the FVGT, which was then used to numerically evaluate the
contributions of VS and SSA to the energy cascade and led to the conclusion that SSA is
larger than VS. These important observations give us new insights into turbulent inter-scale
energy transfer. In this paper, we first obtain a relation for the invariants of FVGTs with
two different filtered sizes, which could be regarded as a generalization of the Betchov
relation for the velocity gradient tensor (Betchov 1956) to scales beyond the dissipative
range. Then we use this relation to demonstrate analytically that SSA contributes more to
energy cascade than VS. Data from direct numerical simulation (DNS) of homogeneous
isotropic turbulence (HIT) are used to confirm our theoretical reasoning. We note that our
derivations require only homogeneity, but not isotropy, and thus can be applied to any
homogeneous flows, not only HIT.

2. Relation for invariants of FVGTs in homogeneous turbulence

We start with the relation for the invariants of the velocity gradient tensor Aij ≡ ∂ui/∂xj,
where u(x, t) is the velocity field. We use the symbol ȳ� to denote the low-pass filtering
operation to any field y(x):

ȳ�(x) =
∫

V
G �(r)y(x + r) dr, (2.1)

where G �(r) is the filter defined on the domain V . In this work, we choose the widely used
Gaussian filter with V = R

3:

G �(r) = 1
(2π�2)3/2 e−|r|2/2�2

, (2.2)

which, when applied to a field, would retain spatial variations with scale larger than
∼ � but suppress those with scale smaller than ∼ �. Thus ū�

i and Ā�
ij ≡ ∂ ū�

i /∂xj refer
respectively to the velocity and FVGT filtered by a Gaussian filter with size �. We restrict
our discussion to incompressible flows; thus Aii = Ā�

ii = 0. Note that a second-rank tensor
can always be decomposed into its symmetric and antisymmetric parts: Aij = Sij + ij,
where Sij ≡ (Aij + Aji)/2 and ij ≡ (Aij − Aji)/2. Similarly we define S̄�

ij and Ω̄�
ij , with

Ā�
ij = S̄�

ij + Ω̄�
ij .

Betchov (1956) proved two relations for the invariants of Aij in homogeneous and
incompressible flows:

〈AijAji〉 = 〈AijAjkAki〉 = 0, (2.3)
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Strain self-amplification is larger than vortex stretching

where the brackets 〈 〉 denote the ensemble average. Equation (2.3) can be expressed in
terms of Sij and ij:

〈SijSji〉 = −〈ijΩji〉 = 1
2 〈ωiωi〉, (2.4)

〈SijSjkSki〉 = −3〈ijSjkΩki〉 = −3
4 〈ωiSijωj〉, (2.5)

where ωi = −εijkΩjk is the vorticity vector and εijk is the permutation tensor. Equation
(2.4) connects the amplitudes of vorticity and the rate of strain, while (2.5), remarkably,
relates the mean rate of VS 〈ωiSijωj〉 to the third-order moments of strain 〈SijSjkSki〉, which
provides further insight into the statistics of Aij (Meneveau 2011). On the other hand, using
FVGT allows us to investigate the interactions between strain and vorticity with different
filtered sizes (Leung et al. 2012; Fiscaletti et al. 2016b; Lozano-Durán, Holzner & Jiménez
2016), for which (2.3) needs to be extended. To that end, we note that recently Yang et al.
(2022) derived a general relation for the invariants involving three vector gradient fields
∂ai/∂xj, ∂bi/∂xj and ∂ci/∂xj in homogeneous flows:〈

∂ai

∂xj

∂bj

∂xk

∂ck

∂xi

〉
+
〈
∂ai

∂xj

∂cj

∂xk

∂bk

∂xi

〉
=
〈
∂ai

∂xj

∂bj

∂xi

∂ck

∂xk

〉
+
〈
∂bi

∂xj

∂cj

∂xi

∂ak

∂xk

〉

+
〈
∂ci

∂xj

∂aj

∂xi

∂bk

∂xk

〉
−
〈
∂ai

∂xi

∂bj

∂xj

∂ck

∂xk

〉
. (2.6)

Note that the derivation of the above only used the chain rule of derivatives and
homogeneity. Special cases of (2.6) were known before. For example, Appendix D of
Eyink (2006) discussed the case when ai, bi and ci are all solenoidal, and Yang, Pumir &
Xu (2020) derived the form for ai = bi = ci but without requiring zero divergence. Now if
we choose the fields ai and bi to be the filtered velocity with filter size �1 and ci to be the
filtered velocity with a different filter size �2, i.e. ai = bi = ū�1

i and ci = ū�2
i , (2.6) gives

〈Ā�1
ik Ā�1

kj Ā�2
ji 〉 = 0, (2.7)

which can be further expressed as

〈Ā�1
ik Ā�1

kj Ā�2
ji 〉 = 〈(S̄�1

ik + Ω̄
�1
ik )(S̄�1

kj + Ω̄
�1
kj )(S̄�2

ji + Ω̄
�2
ji )〉

= 〈S̄�1
ik S̄�1

kj S̄�2
ji 〉 + 〈Ω̄�1

ik Ω̄
�1
kj S̄�2

ji 〉 + 2〈Ω̄�1
ik S̄�1

kj Ω̄
�2
ji 〉 = 0. (2.8)

Physically, we can regard 〈S̄�1
ik S̄�1

kj S̄�2
ji 〉 as the interaction between strain at scale �1 and strain

at scale �2, 〈Ω̄�1
ik Ω̄

�1
kj S̄�2

ji 〉 as the vorticity at scale �1 stretched by the strain at scale �2 and

〈Ω̄�1
ik S̄�1

kj Ω̄
�2
ji 〉 as the interaction between strain and vorticity at scale �1 with vorticity at

scale �2. In the next section we show that those terms in (2.8) are closely related to the
SSA and VS mechanisms defined in Johnson (2020), and based on (2.8) one can show that
SSA contributes more to inter-scale energy transfer than VS.

3. The SSA is larger than VS

By filtering the Navier–Stokes equation, one can readily obtain the evolution equation for
the filtered velocity ū�

i :

∂ ū�
i

∂t
+ ū�

j
∂ ū�

i
∂xj

= −∂ p̄�

∂xi
+ ν∇2ū�

i + f̄ �
i −

∂τ �
ij

∂xj
, (3.1)
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where τ �
ij ≡ uiuj

� − ū�
i ū�

j refers to the SGS stress tensor. Multiplying (3.1) with ū�
i yields

the equation for the large-scale kinetic energy 1
2 ū�

i ū�
i :

∂ 1
2 ū�

i ū�
i

∂t
+

∂Φ�
j

∂xj
= ū�

i f̄ �
i − Π� − 2νS̄�

ijS̄
�
ij, (3.2)

where Φ�
j is a flux term (cf. (2.20b) of Johnson 2021) whose contribution vanishes in

homogeneous flows and Π� ≡ −τ �
ij S̄

�
ij is the energy transfer term discussed extensively in

the literature (Meneveau & Katz 2000; Ballouz & Ouellette 2018, 2020; Buzzicotti et al.
2018; Dong et al. 2020; Vela-Martín & Jiménez 2021). Johnson (2020) showed that for the
Gaussian filter (equation (2.2)), the SGS stress tensor τ �

ij is related to the FVGT Ā�
ij via

τ �
ij =

∫ �2

0
dθ Ā

√
θ

ik Ā
√

θ
jk

√
�2−θ

, (3.3)

which helps us analyse the energy transfer term Π� in the filtered energy equation (3.2).
Plugging (3.3) into the definition of Π� yields

Π� = −τ �
ij S̄

�
ij = −

∫ �2

0
dθ Ā

√
θ

ik Ā
√

θ
jk

√
�2−θ

S̄�
ij

= −
∫ �2

0
dθ S̄

√
θ

ik S̄
√

θ
jk

√
�2−θ

S̄�
ij︸ ︷︷ ︸

Π�
S

+
∫ �2

0
dθΩ̄

√
θ

ik Ω̄
√

θ
kj

√
�2−θ

S̄�
ij︸ ︷︷ ︸

Π�
Ω

+ 2
∫ �2

0
dθ S̄

√
θ

ik Ω̄
√

θ
kj

√
�2−θ

S̄�
ij︸ ︷︷ ︸

Π�
c

, (3.4)

where Π�
S , Π�

Ω and Π�
c correspond to the contributions to the inter-scale energy transfer

due to the interaction of strain at scale � respectively with strain, vorticity and the
correlation between strain and vorticity at a scale smaller than or equal to � (Johnson
2020). Direct numerical simulation results of Johnson (2020) showed that 〈Π�

S 〉 : 〈Π�
Ω〉 :

〈Π�
c 〉 ≈ 5 : 3 : 0 in the inertial range, which led to an important observation that the

contribution of SSA to the energy transfer is larger than that of VS. Next we show that
this observation can be justified analytically based on (2.8).

We start from the expression of 〈Π�〉:

〈Π�〉 = −
∫ �2

0
dθ〈Ā

√
θ

ik Ā
√

θ
jk

√
�2−θ

S̄�
ij〉

= −
∫ �2

0
dθ

∫
V

drG
√

�2−θ (r)〈Ā
√

θ
ik Ā

√
θ

jk (x + r)S̄�
ij(x)〉

955 A15-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

10
72

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.1072
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= −
∫ �2

0
dθ

∫
V

drG
√

�2−θ (r)〈Ā
√

θ
ik Ā

√
θ

jk (x)S̄�
ij(x − r)〉

= −
∫ �2

0
dθ〈Ā

√
θ

ik Ā
√

θ
jk S̄�

√
�2−θ

ij 〉 = −
∫ �2

0
dθ〈Ā

√
θ

ik Ā
√

θ
jk S̄

√
2�2−θ

ij 〉, (3.5)

where the third equality holds due to homogeneity and the last equality comes from the

property of the Gaussian filter: ȳαβ = ȳ
√

α2+β2 (e.g. Pope 2000, p. 567). Applying the
approach of (3.5) to those terms on the right-hand side of the second equality in (3.4), one
can easily obtain that

〈Π�
S 〉 =

∫ �2

0
dθ(−〈S̄

√
θ

ik S̄
√

θ
kj S̄

√
2�2−θ

ji 〉), (3.6)

〈Π�
Ω〉 =

∫ �2

0
dθ〈Ω̄

√
θ

ik Ω̄
√

θ
kj S̄

√
2�2−θ

ji 〉, (3.7)

〈Π�
c 〉 = 2

∫ �2

0
dθ〈S̄

√
θ

ik Ω̄
√

θ
kj S̄

√
2�2−θ

ji 〉. (3.8)

We note that these forms of expressions for 〈Π�
S 〉, 〈Π�

Ω〉 and 〈Π�
c 〉 have not been shown

before. We should also recall that (3.6) to (3.8) can only be applied on average, while
the expression given by Johnson (2020), i.e. (3.4), holds pointwise. Next, the integrand

〈Ā
√

θ
ik Ā

√
θ

jk S̄
√

2�2−θ

ij 〉 in the last expression in (3.5) can be expressed as

〈Ā
√

θ
ik Ā

√
θ

jk S̄
√

2�2−θ

ij 〉 = 〈(S̄
√

θ
ik + Ω̄

√
θ

ik )(S̄
√

θ
kj − Ω̄

√
θ

kj )S̄
√

2�2−θ

ij 〉

= 〈S̄
√

θ
ik S̄

√
θ

kj S̄
√

2�2−θ

ji 〉 − 〈Ω̄
√

θ
ik Ω̄

√
θ

kj S̄
√

2�2−θ

ji 〉 − 2〈S̄
√

θ
ik Ω̄

√
θ

kj S̄
√

2�2−θ

ji 〉. (3.9)

Plugging (3.9) into (3.5) yields

〈Π�〉 =
∫ �2

0
dθ (−〈S̄

√
θ

ik S̄
√

θ
kj S̄

√
2�2−θ

ji 〉)︸ ︷︷ ︸
I1(θ)

+
∫ �2

0
dθ 〈Ω̄

√
θ

ik Ω̄
√

θ
kj S̄

√
2�2−θ

ji 〉︸ ︷︷ ︸
I2(θ)

+ 2
∫ �2

0
dθ 〈S̄

√
θ

ik Ω̄
√

θ
kj S̄

√
2�2−θ

ji 〉︸ ︷︷ ︸
I3(θ)

= 〈Π�
S 〉 + 〈Π�

Ω〉 + 〈Π�
c 〉. (3.10)

For simplicity, we denote I1(θ) ≡ −〈S̄
√

θ
ik S̄

√
θ

kj S̄
√

2�2−θ

ji 〉, I2(θ) ≡ 〈Ω̄
√

θ
ik Ω̄

√
θ

kj S̄
√

2�2−θ

ji 〉
and I3(θ) ≡ 〈S̄

√
θ

ik Ω̄
√

θ
kj S̄

√
2�2−θ

ji 〉. Since 0 � θ � �2, we always have
√

θ �
√

2�2 − θ .
Notice that I1 and I2 are just the first and second terms on the left-hand side of (2.8),
with �1 = √

θ < �2 = √
2�2 − θ , and I3 represents the energy transfer by the strain-rate

tensor at larger scale
√

2�2 − θ acting on the correlation of strain rate and vorticity at
smaller scale

√
θ (Johnson 2020). Thus choosing �1 = √

θ and �2 = √
2�2 − θ in (2.8)
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yields

−〈S̄
√

θ
ik S̄

√
θ

kj S̄
√

2�2−θ

ji 〉︸ ︷︷ ︸
I1(θ)

= 2 〈Ω̄
√

θ
ik S̄

√
θ

kj Ω̄

√
2�2−θ

ji 〉︸ ︷︷ ︸
I4(θ)

+〈Ω̄
√

θ
ik Ω̄

√
θ

kj S̄
√

2�2−θ

ji 〉︸ ︷︷ ︸
I2(θ)

, (3.11)

which, by denoting I4(θ) ≡ 〈Ω̄
√

θ
ik S̄

√
θ

kj Ω̄

√
2�2−θ

ji 〉, is simply written as

I1(θ) = 2I4(θ) + I2(θ). (3.12)

Therefore, as long as I4(θ) > 0, I1(θ) will be greater than I2(θ), and 〈Π�
S 〉 = ∫ �2

0 I1(θ) dθ

will be larger than 〈Π�
Ω〉 = ∫ �2

0 I2(θ) dθ .
Now we show that I4(θ) > 0 in homogeneous turbulence. Applying the properties of

the Gaussian filter again we have

I4(θ) = 〈Ω̄
√

θ
ik S̄

√
θ

kj Ω̄

√
2�2−θ

ji 〉 = 〈Ω̄
√

θ
ik S̄

√
θ

kj Ω̄
√

θ
ji

√
2�2−2θ

〉

=
∫

V
dr〈Ω̄

√
θ

ik (x)S̄
√

θ
kj (x)Ω̄

√
θ

ji (x + r)〉G
√

2�2−2θ (r)

=
∫

V
drG

√
θ

4 (r)G
√

2�2−2θ (r), (3.13)

where we denoted G
√

θ
4 (r) ≡ 〈Ω̄

√
θ

ik (x)S̄
√

θ
kj (x)Ω̄

√
θ

ji (x + r)〉 for simplicity. We first show

that
∫

V drG
√

θ
4 (r) = 0 when V is large enough:∫

V
drG

√
θ

4 (r) =
∫

V
dr〈Ω̄

√
θ

ik (x)S̄
√

θ
kj (x)Ω̄

√
θ

ji (x + r)〉

=
∫

V
dr

〈
Ω̄

√
θ

ik (x)S̄
√

θ
kj (x)

1
2

⎛
⎝∂ ū

√
θ

j

∂xi
(x + r) − ∂ ū

√
θ

i
∂xj

(x + r)

⎞
⎠〉

=
∫

V
dr

1
2

〈(
Ω̄

√
θ

jk (x)S̄
√

θ
ki (x) − Ω̄

√
θ

ik (x)S̄
√

θ
kj (x)

) ∂ ū
√

θ
i

∂xj
(x + r)

〉

=
∫

V
dr

1
2

∂

∂rj
〈(Ω̄

√
θ

jk (x)S̄
√

θ
ki (x) − Ω̄

√
θ

ik (x)S̄
√

θ
kj (x))ū

√
θ

i (x + r)〉

=
∫

V
dr

∂

∂rj
fj(r) =

∮
S

dsjfj(r) = 0, (3.14)

in which fj(r) ≡ 〈1
2 (Ω̄

√
θ

jk (x)S̄
√

θ
ki (x) − Ω̄

√
θ

ik (x)S̄
√

θ
kj (x))ū

√
θ

i (x + r)〉, and we used the
Gauss theorem with S denoting the boundary of V and s being the surface element of
S. The last equality holds as long as fj(r) decreases fast enough when |r| → ∞, which
is in general satisfied by any correlation function of a turbulent flow in an infinite space.
For flows with periodic boundary conditions in space such as in most DNS, this simply
requires that the simulation domain is large enough that the correlation decays sufficiently
at the boundary.
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Strain self-amplification is larger than vortex stretching

A direct consequence of (3.14) is that G
√

θ
4 (r) must change sign over the domain V . As

a correlation function between Ω̄
√

θ
ik S̄

√
θ

kj at position x and Ω̄
√

θ
ji at position x + r, the sign

change of G
√

θ
4 (r) corresponds to the change of the dominating interaction mechanism at

the particular scale. For turbulence, when the separation |r| varies from the dissipative
scale to the integral scale, the dynamics varies continuously from viscosity-dominated to
inertia-dominated; thus a typical correlation function in turbulent flows should change
sign at most once without the presence of another physical mechanism, as shown in
figure 19.5 of Tritton (1988). Moreover, note that G

√
θ

4 (0) = 〈Ω̄
√

θ
ik S̄

√
θ

kj Ω̄
√

θ
ji 〉 is the filtered

VS term and the net energy transfer from large to small scale in turbulence requires that

G
√

θ
4 (0) > 0. Therefore, these two properties of G

√
θ

4 (r) means that G
√

θ
4 (r) > 0 in and

only in a single-connected region V0 enclosing the origin. Using these properties and that

the Gaussian filter G
√

2�2−2θ (r) in (3.13) is a monotonically decreasing function with r,

it is obvious that
∫

V0
drG

√
θ

4 (r) G
√

2�2−2θ (r) > − ∫V−V0
drG

√
θ

4 (r)G
√

2�2−2θ (r), which

yields I4(θ) = ∫
V drG

√
θ

4 (r) G
√

2�2−2θ (r) > 0. Then (3.12) gives that ∀θ ∈ [0, �2], we
have I1(θ) > I2(θ), which easily leads to

〈Π�
S 〉 =

∫ �2

0
I1(θ) dθ >

∫ �2

0
I2(θ) dθ = 〈Π�

Ω〉. (3.15)

In the next section we use DNS results to verify our discussions in this section.

4. Numerical results

The DNS of steady-state HIT is performed using a standard pseudo-spectral method on
N3 grids covering a periodic box of side L = 2π (see Zhou, Wang & Jin (2018) and Zhou
et al. (2019) for more details). In this work, three different cases with N = 256, 512 and
1024 were conducted, corresponding to the Taylor Reynolds number Rλ = 129, 206 and
302, respectively. Results reported below are mostly based on the data of Rλ = 302. Since
we manipulate DNS of steady-state HIT, we use spatial and temporal averages to replace
ensemble average. Statistics are collected from 100 snapshots equally spaced in 2TE for the
Rλ = 206 and 302 cases and 1200 snapshots in 21TE for the Rλ = 129 case. Here TE =
u′2/ε denotes the eddy turnover time, where u′ is the root mean square of the turbulent
fluctuating velocity and ε is the dissipation rate. We also notice that in the derivation
of the previous section, we assume the correlation decays fast enough when |r| → ∞.
In the current DNS, as the simulation is constrained by the box size, we certainly could
not let |r| → ∞, but the periodic condition ensures that the boundary integration on the
left-hand side of the last equality of (3.14) vanishes, which guarantees that the assumptions
in the theoretical derivation section are still satisfied by the current DNS. In addition, our
theoretical demonstration could be applied to more general circumstances as long as the
domain size is much larger than the integral scale of the flow.

In figure 1(a) we numerically check the integration relations derived in (3.10), i.e.
〈Π�

S 〉 = ∫ �2

0 I1(θ) dθ , 〈Π�
Ω〉 = ∫ �2

0 I2(θ) dθ and 〈Π�
c 〉 = 2

∫ �2

0 I3(θ) dθ . In the figure, the
symbols refer to 〈Π�

Ω〉, 〈Π�
S 〉 and 〈Π�

c 〉 calculated from their definitions (see (3.4)) and the
solid lines are from the integrations of I1, I2 and I3, all normalized by the dissipation rate ε

of the unfiltered flow field. These two approaches agree with each other within numerical
precision, which verifies (3.10). In figure 1(b) we show the same quantity as in figure 1(a)
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Π
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〉
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–0.2

0

0.2

0.4

0.8

0.6

1.0

〈Π
�
〉/ε

Johnson (2020)

(3.4) (3.10)

Present

〈Πl, S〉 + 〈Πnl, S〉

〈Π�
S〉

〈Π�
c〉

〈Π�
Ω〉

〈Πnl, c〉
〈Πtotal〉

〈Πl, Ω〉 + 〈Πnl, Ω〉

(a)

(b)

Figure 1. (a) Energy transfer terms calculated from their definitions, (3.4) (square symbols), and the
corresponding integration expressions, (3.10) (solid lines). Red, blue and magenta colours refer to 〈Π�

S 〉, 〈Π�
Ω 〉

and 〈Π�
c 〉, respectively, all normalized by the energy dissipation rate ε. (b) Terms 〈Π�

S 〉, 〈Π�
Ω 〉 and 〈Π�

c 〉
normalized by their sum 〈Π�〉, together with data extracted from figure 3 of Johnson (2020) for comparison.

but normalized by the sum 〈Π�〉 = 〈Π�
S 〉 + 〈Π�

Ω〉 + 〈Π�
c 〉. Our results compare well with

the data extracted from figure 3 of Johnson (2020). The very small differnces might be due
to the different Reynolds numbers (Rλ = 302 in our work and 400 in Johnson (2020)).

Figure 2 shows various terms as functions of θ for fixed � = 100η ≈ 0.33LE, where LE
denotes the integral length scale given by LE ≡ (π/2〈u2

x〉)
∫∞

0 E(k)k−1dk, where ux is the
component of x direction of the velocity. In figure 2(a), the red, blue and black lines refer
to I1(θ), I2(θ) and I4(θ), respectively. We see that I4(θ) is indeed always positive in the
range 0 ≤ θ ≤ �2, as discussed in § 3, which ensures 〈Π�

S 〉 > 〈Π�
Ω〉.

Note that in figure 2 the I4(θ) curve is nearly independent of θ , with a very slight
decrease when θ/η2 � 103, which turns out to have interesting dynamic consequences.
Johnson (2020) decomposed Π�

S and Π�
Ω into local and non-local parts: Π�

S = Π�
l,S +

Π�
nl,S and Π�

Ω = Π�
l,Ω + Π�

nl,Ω , where Π�
l,S ≡ −S̄�

ikS̄�
kjS̄

�
ji�

2 and Π�
l,Ω ≡ Ω̄�

ikS̄�
kjΩ̄

�
ji�

2. The
DNS results show that 〈Π�

nl,S〉 is very close to 〈Π�
nl,Ω〉. Since 〈Π�

l,S〉 = −〈S̄�
ikS̄�

kjS̄
�
ji〉�2 =

I1(�
2)�2, this means that the local contribution 〈Π�

S 〉 simply equals the area of the
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〈Π�
nl,S〉 〈Π�
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〈Π�
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kj
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ji
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S–kj

S–ji

θ θ

θ
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θ

(a) (b)

Figure 2. (a) Log–log plot of the DNS results for I1(θ) ≡ −〈S̄
√

θ
ik S̄

√
θ

kj S̄
√

2�2−θ

ji 〉, I2(θ) ≡ 〈Ω̄
√

θ
ik Ω̄

√
θ

kj S̄
√

2�2−θ

ji 〉
and I4(θ) ≡ 〈Ω̄

√
θ

ik S̄
√

θ
kj Ω̄

√
2�2−θ

ji 〉. (b) Same data as (a) but in a semi-log plot, with indications for the
correspondence between several flux terms and the area of regions in the plot. The red shaded curved triangle,
blue shaded curved triangle, red shaded rectangle, blue shaded rectangle and black area correspond to 〈Π�

nl,S〉,
〈Π�

nl,Ω 〉, 〈Π�
l,S〉, 〈Π�

l,Ω 〉 and (〈Π�
nl,Ω 〉 − 〈Π�

nl,S〉)/2, respectively.

red rectangle shown in figure 2(b). Similarly, 〈Π�
l,Ω〉 = −〈Ω̄�

ikS̄�
kjΩ̄

�
ji〉�2 = I2(�

2)�2 and
corresponds to the area of the blue rectangle. The non-local contributions 〈Π�

nl,S〉 and
〈Π�

nl,Ω〉 correspond to the areas of the red and blue curved triangles. The difference
between 〈Π�

nl,S〉 and 〈Π�
nl,Ω〉 is

Π�
nl,S − Π�

nl,Ω = (Π�
S − Π�

l,S) − (Π�
Ω − Π�

l,Ω) = (Π�
S − Π�

Ω) − (Π�
l,S − Π�

l,Ω)

= 2
∫ �2

0
I4(θ) dθ − �2[I1(�

2) − I2(�
2)]

≈ �2[2I4(�
2) − I1(�

2) + I2(�
2)] = 0, (4.1)

in which we used I4(θ) ≈ const. ≈ I4(�
2) and the identity (3.12).

In figure 2, the other two terms, I1(θ) and I2(θ), grow rapidly as θ decreases
towards 0, and at θ = 0, I1(0) ≈ I2(0) � I4(0). To better understand this behaviour, we
notice that for the isotropic case, (3.13) simplifies to I4(0) = ∫∞

0 dr4πr2G4(r)G
√

2�(r),

where G4(r) = 〈Ωik(0)Skj(0)Ωji(r)〉, and similarly, I1(0) = ∫∞
0 dr4πr2G1(r)G

√
2�(r)

and I2(0) = ∫∞
0 dr4πr2G2(r)G

√
2�(r), with G1(r) ≡ −〈Sik(0)Skj(0)Sji(r)〉 and G2(r) ≡

〈Ωik(0)Ωkj(0)Sji(r)〉. In figure 3(a) we plot G1, G2 and G4 as functions of r, normalized
by their values at r = 0. One can see that as r increases, G4(r) decreases to 0 much faster
than G1 and G2, which results in I4(0) � I1(0) and I2(0). In figure 3(b) we show the
filtered version of G’s in the HIT case, i.e. G

√
θ

1 (r) ≡ −〈S̄
√

θ
ik (0)S̄

√
θ

kj (0)S̄
√

θ
ji (r)〉, G

√
θ

2 (r) ≡
〈Ω̄

√
θ

ik (0)Ω̄
√

θ
kj (0)S̄

√
θ

ji (r)〉 and G
√

θ
4 (r) ≡ 〈Ω̄

√
θ

ik (0)S̄
√

θ
kj (0)Ω̄

√
θ

ji (r)〉. Those curves are
qualitatively similar to those in figure 3(a); therefore, we still have I4(0) � I1(0) and

I2(0). In figures 3(a) and 3(b), the curves representing G1(r) and G
√

θ
1 (r) appear to be

below those representing G2(r) and G
√

θ
2 (r) respectively and thus might raise the question

as to whether indeed I1(θ) > I2(θ). This confusion is due to the fact that Gi(r) shown
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0
)
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G
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=
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θ
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G

i
(0

),
=

 1
0
η

θ
θ

θ

(a) (b)

(c) (d)

G1, Rλ = 302

G2, Rλ = 206

G4, Rλ = 129

Figure 3. (a) The DNS results for G1(r)/G1(0) (blue lines), G2(r)/G2(0) (red lines) and G4(r)/G4(0)

(magenta lines), with solid lines for Rλ = 302, dashed lines for Rλ = 206 and dot-dashed lines for Rλ = 129.
(b) The DNS results for G

√
θ

1 (r)/G
√

θ
1 (0), G

√
θ

2 (r)/G
√

θ
2 (0) and G

√
θ

4 (r)/G
√

θ
4 (0), the line designations being

the same as in (a). (c) Same as (a) but all curves are normalized by G1(0). (d) Same as (b) but all curves are

normalized by G
√

θ
1 (0).

in figure 3(a) and 3(b) were normalized by their corresponding values at r = 0 and
Gi(0) differ in magnitude. In figures 3(c) and 3(d), the values of Gi are plotted with

non-dimensionalization by G1(0) or G
√

θ
1 (0), from which it is clearly seen that G1(r) and

G
√

θ
1 (r) are above G2(r) and G

√
θ

2 (r) respectively. Thus we have I1(θ) � I2(θ) � I4(θ) >

0, for 0 ≤ θ ≤ �2. In addition, we notice that the proof of (3.14) could also be applied to
G

√
θ

1 and G
√

θ
2 ; thus all the G curves should cross zero once and this is consistent with

figure 3, although the negative values are minuscule and hard to see from the figure.
Finally, we notice that the numerical results of Johnson (2020) show that the magnitudes

of SSA and VS are 〈Π�
S 〉 : 〈Π�

Ω〉 ≈ 5 : 3. Based on a simple K41-type scaling argument,
our approach developed here leads to an approximate estimate of this ratio, namely 〈Π�

S 〉 :
〈Π�

Ω〉 ≈ 9 : 5, as shown in detail in the Appendix. The quantitative deviation of the model
prediction from the DNS results indicates that the simple scaling analysis is not enough to
describe the third-order moments of filtered velocity gradient.

5. Concluding remarks

In summary, we showed that in the filtered energy equation, the three contributions to
the mean inter-scale energy transfer from SSA, VS and the correlation between strain
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and vorticity can all be expressed as integrals of third-order moments of filtered velocity
gradients associated with two different filter sizes (equation (3.10)). With the help of
that representation, and a relation involving third-order moments of filtered velocity
gradients in homogeneous flows (equation (3.11)), we explained the observation that
SSA dominates VS in kinetic energy transfer (Johnson 2020). Although the analytical
results were compared with DNS of HIT, the derivation presented in this work is not
restricted to HIT and could be applied to any homogeneous flows. Furthermore, the
homogeneity constraint (equation (3.11)) provides an explanation to the observed nearly
equal contributions from multi-scale strain amplification and VS (see figure 2b). We notice
that those third-order moments of filtered velocity gradient (i.e. I1 to I4 in the text) could
not be described by simple scaling analysis. Thus in the future it would be interesting
to quantitatively investigate their properties, especially their roles in inter-scale energy
transfer. Also, DNS of homogeneous but anisotropic turbulence could be used to verify
the theoretical arguments in this work.
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Appendix

In this appendix we discuss the ratio between magnitudes of SSA and VS based on a
K41-type scaling argument. As discussed in Johnson (2020, 2021), the energy transfer
due to SSA and VS, Π�

S and Π�
Ω , can be decomposed into local and non-local parts:

Π�
S = Π�

l,S + Π�
nl,S and Π�

Ω = Π�
l,Ω + Π�

nl,Ω . Then the Betchov relation leads to 〈Π�
l,S〉 :

〈Π�
l,Ω〉 = 3 : 1, and numerical evidence shows that 〈Π�

nl,S〉 : 〈Π�
nl,Ω〉 ≈ 1 : 1, as discussed

in § 4. With these results, to understand the observed ratio 〈Π�
S 〉 : 〈Π�

Ω〉 ≈ 5 : 3, one
only needs to discuss the ratio between the local contribution and the total VS, that is,

〈Π�
l,Ω〉 : 〈Π�

Ω〉. As given by (3.7), 〈Π�
Ω〉 = ∫ �2

0 dθ〈Ω̄
√

θ
ik Ω̄

√
θ

kj S̄
√

2�2−θ

ji 〉 = ∫ �2

0 dθ I2(θ).
Thus a naive, K41-type scaling argument leads to

I2(θ) ∼
(

ū
√

θ

√
θ

)2
ū
√

2�2−θ

√
2�2 − θ

∼ εθ−2/3(2�2 − θ)−1/3, (A1)

which suggests that one could try a simple form as

I2(θ) =
{

CI2εθ
−2/3(2�2 − θ)−1/3 (η2 < θ ≤ �2),

CI2εη
−4/3(2�2 − η2)−1/3 (0 ≤ θ ≤ η2),

(A2)

where CI2 is a dimensionless coefficient that might depend on �/η, but independent of θ .
The predicted behaviour of I2(θ) from this model is shown in figure 4, together with the
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Figure 4. Log–log plot of the DNS results for I2(θ) ≡ 〈Ω̄
√

θ
ik Ω̄

√
θ

kj S̄
√

2�2−θ

ji 〉 and the prediction of the model
given by (A2).

DNS result. As shown in the main text, the local contribution to VS is

〈Π�
l,Ω〉 = I2(�

2)�2 = CI2 ε�−4/3(2�2 − �2)−1/3�2 = CI2 ε. (A3)

The total VS is

〈Π�
Ω〉 =

∫ �2

0
dθI2(θ) = CI2 ε

∫ �2

η2
θ−2/3(2�2 − θ)−1/3 dθ + η2I2(0)

= CI2 ε

[
1
2

ln(t2 − t + 1) +
√

3atan
(

2t − 1√
3

)
− ln(t + 1)

]t�

1
+ 2−1/3CI2 ε

(η

�

)2/3
,

(A4)

where t� = (2(�/η)2 − 1)1/3. For the usual filter size in the inertial range, � � η, we have
t� � 1. In that case, the result above can be simplified to

〈Π�
Ω〉 ≈

(
π√

3
+ ln 2

)
CI2ε. (A5)

Comparing (A3) and (A5), we see that

〈Π�
l,Ω〉 : 〈Π�

Ω〉 ≈ 1 :
(

π√
3

+ ln 2
)

≈ 1 : 2.5, (A6)

which gives an estimate of the ratio between SSA and VS as

〈Π�
S 〉 : 〈Π�

Ω〉 = (〈Π�
l,S〉 + 〈Π�

nl,S〉) : 〈Π�
Ω〉 ≈ (3〈Π�

l,Ω〉 + 〈Π�
nl,Ω〉) : 〈Π�

Ω〉
= (2〈Π�

l,Ω〉 + 〈Π�
Ω〉) : 〈Π�

Ω〉 ≈ (2 + 2.5) : 2.5 = 9 : 5, (A7)

which is not too far from the observed ratio of 5 : 3. Possible reasons for the deviation
might include (i) the alignment between the filtered strain S̄�2

ij and vorticity ω̄
�1
i might be

scale-dependent and especially on the ratio �2/�1; and (ii) the filtered velocity gradient Ā�
ij

contains information at length scales other than �, and thus the simple scaling argument
fails to catch its quantitative behaviour.

955 A15-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

10
72

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.1072


Strain self-amplification is larger than vortex stretching

REFERENCES

BALLOUZ, J.G. & OUELLETTE, N.T. 2018 Tensor geometry in the turbulent cascade. J. Fluid Mech.
835, 1048–1064.

BALLOUZ, J.G. & OUELLETTE, N.T. 2020 Geometric constraints on energy transfer in the turbulent cascade.
Phys. Rev. Fluids 5, 034603.

BETCHOV, R. 1956 An inequality concerning the production of vorticity in isotropic turbulence. J. Fluid Mech.
1, 497–504.

BORUE, V. & ORSZAG, S.A. 1998 Local energy flux and subgrid-scale statistics in three-dimensional
turbulence. J. Fluid Mech. 366, 1–31.

VAN DER BOS, F., TAO, B., MENEVEAU, C. & KATZ, J. 2002 Effects of small-scale turbulent motions on the
filtered velocity gradient tensor as deduced from holographic particle image velocimetry measurements.
Phys. Fluids 14 (7), 2456–2474.

BUZZICOTTI, M., LINKMANN, M., ALUIE, H., BIFERALE, L., BRASSEUR, J. & MENEVEAU, C. 2018
Effect of filter type on the statistics of energy transfer between resolved and subfilter scales from a-priori
analysis of direct numerical simulations of isotropic turbulence. J. Turbul. 19 (2), 167–197.

CARBONE, M. & BRAGG, A.D. 2020 Is vortex stretching the main cause of the turbulent energy cascade?
J. Fluid Mech. 883, R2.

DANISH, M. & MENEVEAU, C. 2018 Multiscale analysis of the invariants of the velocity gradient tensor in
isotropic turbulence. Phys. Rev. Fluids 3, 044604.

DAVIDSON, P.A. 2015 Turbulence: An Introduction for Scientists and Engineers, 2nd edn. Oxford Press.
DOAN, N.A.K., SWAMINATHAN, N., DAVIDSON, P.A. & TANAHASHI, M. 2018 Scale locality of the energy

cascade using real space quantities. Phys. Rev. Fluids 3, 084601.
DONG, S., HUANG, Y., YUAN, X. & LOZANO-DURÁN, A. 2020 The coherent structure of the kinetic energy

transfer in shear turbulence. J. Fluid Mech. 892, A22.
EYINK, G. 1995 Local energy flux and the refined similarity hypothesis. J. Stat. Phys. 78, 335–351.
EYINK, G. 2006 Multi-scale gradient expansion of the turbulent stress tensor. J. Fluid Mech. 549, 159–190.
FISCALETTI, D., ATTILI, A., BISETTI, F. & ELSINGA, G.E. 2016a Scale interactions in a mixing layer - the

role of the large-scale gradients. J. Fluid Mech. 791, 154–173.
FISCALETTI, D., ELSINGA, G.E., ATTILI, A., BISETTI, F. & BUXTON, O.R.H. 2016b Scale dependence of

the alignment between strain rate and rotation in turbulent shear flow. Phy. Rev. Fluids 1, 064405.
FRISCH, U. 1995 Turbulence: The Legacy of A. N. Kolmogorov. Cambridge University Press.
HE, G.W., JIN, G.D. & YANG, Y. 2017 Space-time correlations and dynamic coupling in turbulent flows.

Annu. Rev. Fluid Mech. 49, 51–70.
HIGGINS, C.W., PARLANGE, M.B. & MENEVEAU, C. 2003 Alignment trends of velocity gradients and

subgrid-scale fluxes in the turbulent atmospheric boundary layer. Boundary-Layer Meteorol. 109, 59–83.
JOHNSON, P.L. 2020 Energy transfer from large to small scales in turbulence by multiscale nonlinear strain

and vorticity interactions. Phys. Rev. Lett. 124, 104501.
JOHNSON, P.L. 2021 On the role of vorticity stretching and strain self-amplification in the turbulence energy

cascade. J. Fluid Mech. 922, A3.
KOLMOGOROV, A.N. 1941a Dissipation of energy in locally isotropic turbulence. Dokl. Akad. Nauk SSSR

32, 16–18.
KOLMOGOROV, A.N. 1941b The local structure of turbulence in incompressible viscous fluid for very large

Reynolds numbers. Dokl. Akad. Nauk SSSR 30, 299–303.
LEUNG, T., SWAMINATHAN, N. & DAVIDSON, P.A. 2012 Geometry and interaction of structures in

homogeneous isotropic turbulence. J. Fluid Mech. 710, 453–481.
LOZANO-DURÁN, A., HOLZNER, M. & JIMÉNEZ, J. 2016 Multiscale analysis of the topological invariants

in the logarithmic region of turbulent channels at a friction Reynolds number of 932. J. Fluid Mech.
803, 356–394.

MENEVEAU, C. 2011 Lagrangian dynamics and models of the velocity gradient tensor in turbulent flows. Annu.
Rev. Fluid Mech. 43, 219–245.

MENEVEAU, C. & KATZ, J. 2000 Scale-invariance and turbulence models for large-eddy simulation. Annu.
Rev. Fluid Mech. 32, 1–32.

POPE, S.B. 2000 Turbulent Flows. Cambridge University Press.
PULLIN, D.I. & SAFFMAN, P.G. 1998 Vortex dynamics in turbulence. Annu. Rev. Fluid Mech. 30, 31–51.
RICHARDSON, L.F. 1922 Weather Prediction by Numerical Processes. Cambridge University Press.
TAO, B., KATZ, J. & MENEVEAU, C. 2000 Geometry and scale relationships in high Reynolds number

turbulence determined from three-dimensional holographic velocimetry. Phys. Fluids 12, 941–944.
TAO, B., KATZ, J. & MENEVEAU, C. 2002 Statistical geometry of subgrid-scale stresses determined from

holographic particle image velocimetry measurements. J. Fluid Mech. 457, 35–78.

955 A15-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

10
72

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.1072


P.-F. Yang, Z.D. Zhou, H. Xu and G.W. He

TAYLOR, G.I. 1937 The statistical theory of isotropic turbulence. J. Aeronaut. Sci. 4, 311–315.
TAYLOR, G.I. 1938 Production and dissipation of vorticity in a turbulent fluid. Proc. R. Soc. Lond. A

164, 15–23.
TENNEKES, H. & LUMLEY, J.L. 1972 A First Course in Turbulence. MIT Press.
TRITTON, D.J. 1988 Physical Fluid Dynamics, 2nd edn. Oxford University Press.
TSINOBER, A. 2009 An Informal Conceptual Introduction to Turbulence. Springer.
VELA-MARTÍN, A. & JIMÉNEZ, J. 2021 Entropy, irreversibility and cascades in the inertial range of isotropic

turbulence. J. Fluid Mech. 915, A36.
YANG, P.-F., FANG, J., FANG, L., PUMIR, A. & XU, H. 2022 Low-order moments of the velocity gradient

in homogeneous compressible turbulence. J. Fluid Mech. 947, R1.
YANG, P.-F., PUMIR, A. & XU, H. 2020 Dynamics and invariants of the perceived velocity gradient tensor in

homogeneous and isotropic turbulence. J. Fluid Mech. 897, A9.
ZHOU, Z.D., HE, G.W., WANG, S.Z. & JIN, G.D. 2019 Subgrid-scale model for large-eddy simulation of

isotropic turbulent flows using an artificial neural network. Comput. Fluids 195, 104319.
ZHOU, Z.D., WANG, S.Z. & JIN, G.D. 2018 A structural subgrid-scale model for relative dispersion in

large-eddy simulation of isotropic turbulent flows by coupling kinematic simulation with approximate
deconvolution method. Phys. Fluids 30, 105110.

955 A15-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

10
72

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.1072

	1 Introduction
	2 Relation for invariants of FVGTs in homogeneous turbulence
	3 The SSA is larger than VS
	4 Numerical results
	5 Concluding remarks
	Appendix
	References

