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A B S T R A C T   

Reliability analysis of engineering components or structures heavily relies on accurately estimating the fatigue 
properties of materials. However, significant uncertainty exists regarding the distribution form and value in 
fatigue data, posing significant challenges in constructing a robust probability fatigue model. To address this 
challenge, we propose a Bayesian model averaging (BMA) method to incorporate model form uncertainty into 
the estimation of the probability density of fatigue life. The performance of BMA was verified through numerical 
experiments using both simulated and experimental data. The results highlight the robustness and reliability of 
BMA compared to individual models, as it effectively incorporates model form uncertainty. The proposed BMA 
model offers a general framework for developing probabilistic fatigue models with high robustness and accuracy 
in their predictions. This model contributes to advancing the field of reliability analysis by addressing the 
challenges posed by uncertainty and enhancing the understanding of fatigue properties for engineering com-
ponents and structures.   

1. Introduction 

Engineering components often experience fatigue failure when they 
are exposed to repeated stress over an extended period of time. There-
fore, in the reliability design, it is crucial to understand and depict the 
relationship between the fatigue life of engineering components and the 
applied stress [1–5]. The S-N curve is commonly employed in safe-life 
design as an essential criterion for describing the relationship between 
fatigue life and cyclic stress [6–11]. Due to the origin of fatigue in ma-
terials from microscopic flaws that propagate into macroscopic cracks 
under cyclic stress conditions, fatigue data exhibits high scatter and 
requires uncertainty analysis [12,13]. Therefore, it becomes necessary 
to extend the median S-N curve to assess both the deterministic and 
probabilistic aspects of the composite’s fatigue behavior [14,15]. 

Due to the inherent scattering in fatigue data, the variability in 
stress-life datasets is typically described using probability distributions 
to enable the construction of the P-S-N curves for reliability and safety 
design. Consequently, the specification of the probability distribution is 
of primary importance. However, deriving the distribution function of 
fatigue data based on physical argument is challenging [16]. In practice, 
the distribution function is often assumed or fitted to experimental data. 

Such as, the Lognormal and Weibull distributions being the two most 
commonly employed models for analyzing the probabilistic behavior of 
fatigue failure [17]. This inevitably introduces uncertainty since the true 
underlying probability distributions are unknown. Furthermore, if the 
incorrect model is fit to data, estimates of life quantiles will be inaccu-
rate or biased [18]. Additionally, in practical engineering, the life dis-
tribution sometimes consists of a mixture of multiple distributions, with 
the failure rate being represented by the well-known bathtub curve 
[19,20]. 

The practical engineering materials exhibit significant uncertainty in 
fatigue life performance due to the randomness of microstructures and 
defects. The ‘classical’ method, like ISO-12107 [21], assumes specific 
distributions and estimate their parameters, which can be limited by the 
assumptions made and might not fully capture the underlying variability 
in the fatigue life data. Selecting a “best” model without considering the 
uncertainty between different models can lead to biased predictions 
[22]. Moreover, the process of fatigue testing is both time-consuming 
and expensive, leading to limited availability of experimental observa-
tions. This limitation poses challenges in accurately determining the true 
underlying life distribution of practical engineering materials or com-
ponents. Therefore, it becomes imperative to consider the uncertainty 
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between models in decision-making, especially when multiple candidate 
distributions are deemed plausible but yield different P-S-N estimations. 

To mitigate the risk of neglecting uncertainty between multiple po-
tential distribution models, we utilized the Bayesian model averaging 
(BMA) method [23–26]. Unlike assuming a single distribution, the BMA 
method takes into account a range of candidate distributions, such as the 
Weibull, Lognormal, or other possible distributions that could describe 
the fatigue life data. Each candidate distribution is assigned a weight 
based on its posterior probability, reflecting the level of support derived 
from the observed data. The BMA method then combines the informa-
tion from all candidate distributions to obtain a more comprehensive 
and robust estimate of the P-S-N curve. 

The paper is organized as follows. The hierarchical Bayesian 
framework involving multiple models are firstly introduced in Section 2. 
The specific Bayesian inference is performed in Section 3. The effec-
tiveness of the BMA method is validated through simulated and exper-
imental fatigue data analysis in Section 4. Conclusions are finally 
presented in Section 5. 

2. Probabilistic modeling for hierarchical uncertainties 

We consider a fatigue life experiment involving a total of n speci-
mens. Failures are seen only if they occur before a particular time tC, 
which is named runout time. A unit surviving longer than that time tC is 
considered a right-censored observation or runout. The fatigue data is 
represented as {(Si, ti,δi)|i = 1,2,⋯,n}. In this representation, Si repre-
sents the applied stress level for the i-th test specimen. The fatigue life 
ti = min(Ti, tc) is defined as the minimum value between the actual 

fatigue life Ti and the right censoring time tC. The variable δi indicating 
whether the test of i-th specimen is runout (δi = 0) or not (δi = 1), and it 
is given by Eq. (1) as 

δi =

{
1, if specimen failure,
0, if specimen runout. (1) 

The likelihood function for runout (right-censored) observations has 
been extensively studied [27,28], which is deduced as 

L(t) =
∏n

i=1
[f (ti)]

δi [R(ti)]
1− δi , (2)  

where f(⋅) and R(⋅) are the probability density function and reliability 
function, respectively. 

2.1. General regression model 

The determination of fatigue properties in products or materials in-
volves testing a set of specimens under varying stress levels to establish a 
relationship between fatigue life and the applied stress levels. In engi-
neering applications, it is commonly assumed that this relationship 
follows a power stress-life curve [29], known as the Basquin relation [6] 
shown in Eq. (3). 

Ti = AS− B
i , (3)  

where A > 0 and B > 0 are the parameters which are shared over stress 
levels. 

Fatigue life is the duration that it takes for a material or component 

Fig. 1. Schematic description of the hierarchical Bayesian framework for uncertainty quantification of fatigue S-N curves. p(θi|Mi), i = 1, 2,⋯K denotes the 
prior distribution of parameter vector of the candidate model Mi. L(D|θi), i = 1,2,⋯,K is the likelihood function under model Mi, where D is the observed fatigue life 
data containing the applied stress level, the fatigue life (or right censored time for cases where failure hasn’t occurred), and an indicator that distinguishes between 
failure and runout. 
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to fail under repeated or cyclic loading. In practical scenarios, it is 
inherently stochastic and displays variability influenced by various 
factors, including material properties, manufacturing variations, envi-
ronmental conditions, and operational parameters. The stochastic na-
ture of fatigue life implies that identical specimens subjected to identical 
loading conditions can exhibit different fatigue lives. A statistical model 
can be used to characterize the variability or scatter in fatigue life as 

T ∼ F(T|θ) (4)  

where T denotes the fatigue life, the distribution function F can be given 
as different forms (such as: Lognormal distribution, Weibull distribution, 
Gamma distribution, and Extreme value distribution etc.) from its spe-
cial characteristic of the research object in experimental observations. θ 
means the distribution parameters involved in the given distribution 
model F. The fatigue of products or materials can be expressed by S-N 
curves depicting the relationship between the load cycles up to failure 
and the applied stress. Here, the power relationship between life and 
stress can be reflected by modeling the distribution parameters θ. 
Through this modeling process, we can assess the effect of stress on the 
probability distribution of fatigue life. 

2.2. Candidate distribution models 

The Lognormal and Weibull distributions are two most widely used 
log-location-scale distributions for description of the fatigue life-stress 
relationship [17,30]. For example, [31] applied the Lognormal distri-
bution and 3-parameter Weibull distribution to describe the fatigue life 
data of T700/MTM46 composite laminates. Lognormal and Weibull 
distributions are both utilized in Bayesian inference and model com-
parison for analyzing metallic fatigue data [32]. Therefore, we consider 
merely the Lognormal and Weibull distribution as the candidate distri-
bution models. 

3. The Bayesian inference framework 

In this section, we provide a detailed explanation of the Bayesian 
inference framework, taking the Bayesian Model Averaging (BMA) 
model integrated with the Lognormal regression model (LNR) and the 
Weibull regression model (WBR) as an illustrative example. It is worth 
noting that the proposed framework can be easily extended to contain 
more candidate distributions. The hierarchical Bayesian framework for 
uncertainty quantification of fatigue S-N curves is shown in Fig. 1. 
Starting from fatigue life data, the S-N model for depicting the rela-
tionship between the stress level and the fatigue life can be firstly 
assumed (i.e. the Basquin relation) or fitted from the fatigue life data at 
several stress levels. For mapping the scatter rule of fatigue life at every 
stress level, the distribution model is then constructed. By considering 
the uncertainty of model distribution, some candidate distributions for 
fatigue life are assumed, and the stress level are incorporated into the 
model parameters. For each model, the classic Bayesian inference is 
carried out according to the fatigue life data used in this paper. In spe-
cific, the prior knowledge or beliefs (prior probability) is combined with 
observed data (likelihood) based on Bayes’ theorem to obtain a posterior 
distribution. Then the candidate models are combined through Bayesian 
model averaging (BMA) to tackle model distribution uncertainty issue. 
The idea behind BMA is to weight these models based on their posterior 
probabilities, which reflect the relative support provided by the 
observed data. That is the posterior probabilities are used to assign 
weights to the models, and the final prediction or inference is obtained 
by averaging the predictions or estimates from the weighted models. 

3.1. Bayesian Lognormal regression model for S-N curves (LRN) 

Suppose the fatigue lives t = (t1, t2,⋯, tn)′ for n specimens are inde-
pendently and identically distributed (i.i.d.), and each ln(ti), i = 1,2,⋯, n 

follows a normal distribution N(μ, σ2). That is each ti follows the 
Lognormal distribution LN(μ, σ2) with parameters μ and σ2. Then the 
probability density function (PDF) and reliability function are as 
follows: 

f (ti|μ, σ2) =
1
̅̅̅̅̅
2π

√
σti

exp
{

−
1

2σ2[ln(ti) − μ]2
}

, (5)  

R(ti|μ, σ2) = 1 − Φ
[

ln(ti) − μ
σ

]

. (6)  

Φ(t) is the cumulative probability function (CDF) of the standard normal 
distribution. Let’s denote xi = (1, ln(Si))

′, β1 = (β10, β11)
′. The stress level 

is introduced by μi = x′
iβ1 to construct the Lognormal regression model. 

Eq. (2) provides the likelihood function for right-censored observations 
under the general distribution. Then the joint likelihood function is 
derived by substituting Eqs. (5) and (6) into Eq. (2) 

L(D|β1, σ) = (2πσ2)
− 1

2

∑n

i=1
δi exp

{

−
1

2σ2

∑n

i=1
δi
[
ln(ti) − x′

iβ1
]2
}

× Π
n

i=1
t− δi
i

{

1 − Φ
(

ln(ti) − x′
iβ1

σ

)}1− δi

.

(7) 

To develop Bayesian inference, the prior distributions for σ and β1 
are required. Firstly, we consider that prior distributions are indepen-
dent, i.e., p(σ, β1) = p(σ)p(β1). A typical choice for σ is a Half-Cauchy 
prior distribution. The choice of a Half-Cauchy prior [33,34] is mainly 
motivated by the following two reasons: (I) The Half-Cauchy distribu-
tion has heavy tails, which allows for the possibility of extreme values or 
outliers in the standard deviation parameter. This can be useful in cases 
where there is substantial uncertainty or variability in the fatigue data, 
and the heavy-tailed prior accommodates the potential for extreme 
values. (II) The Half-Cauchy distribution is often considered non- 
informative or weakly informative, as it does not impose strong as-
sumptions on the prior knowledge about the standard deviation 
parameter. It allows the data have a greater influence on the posterior 
estimates. Here, we assume σ ∼ halfcauchy(σ0) with hyper-parameter σ0, 
where its probability density function is f(σ|σ0) =
⎧
⎨

⎩

2
πσ0

1
1 + σ2/σ2

0
, σ > 0,

0, otherwise.
. In addition, we assume a conjugate multi- 

normal prior distribution N(μ0,Σ0) for β1. Then the joint posterior dis-
tribution is given by 

p(τ, β1|D)∝L(D|τ, β1) × p(σ|σ0) × p(β1|μ0,Σ0)∝σ− (
∑n

i=1
δi + 1)

× (σ2 + σ2
0)

− 1
× Π

n

i=1
t− δi
i {1 − Φ[

ln(ti) − x′
iβ1

σ ]}

1− δi

× exp{−
1

2σ2

∑n

i=1
δi[ln(ti) − x′β1]

2
+ (β1 − μ0)

′Σ− 1
0 (β1 − μ0)} (8) 

Then the Bayesian inference can be carried out via the joint posterior 
samples, which can be drawn with a Markov Chain Monte Carlo 
(MCMC). The fundamental idea is to construct a Markov chain such that 
it converges to the posterior distribution [25,35,36]. Among many 
existed MCMC algorithms, the Metropolis-Hastings (M− H) algorithm 
[37] and the Gibbs sampler [38–40] are the two most extensively used 
methods. However, only when the full conditional distributions are 
known, the Gibbs sampler can be used [41]. M− H algorithm is a 
generalization form of Gibbs sampler. In standard M− H, a proposal 
distribution is used to generate candidate samples, which is then 
accepted or rejected based on the acceptance probability. However, 
selecting an appropriate proposal distribution can be challenging, 
especially for high-dimensional or complex target distributions. Poor 
choices of the proposal distribution can lead to slow convergence or high 
rejection rates. Therefore, we employed the Adaptive Metropolis [42] a 
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variant of the Metropolis-Hastings algorithm, which aims to improve the 
efficiency and convergence of the sampling process by dynamically 
adapting the proposal distribution during the sampling iterations. 

3.2. Bayesian Weibull regression model for S-N curves (WBR) 

Suppose the fatigue lives t = (t1, t2,⋯, tn)′ for n specimens are i.i.d., 
and each one follows the Weibull distribution Weibull(a,b), in which the 
shape parameter a > 0 and the scale parameter b > 0. The PDF and the 
reliability are as follows: 

f (ti|a, b) =
a
b

(ti

b

)a− 1
exp

[
−
(ti

b

)a ]
, (9)  

R(ti|a, b) = 1 − F(ti|a, b) = exp
[
−
(ti

b

)a ]
. (10) 

Based on the observation data D = {(Si,ti,δi)|i = 1,2,⋯,n}, and Eqs. 
(2), 9–10), then the joint likelihood function can be obtained as 

L(D|a, b) =
a
∑n

i=1
δi

ba
∑n

i=1
δi

exp

[

−
∑n

i=1

(ti

b

)a
]
∏n

i=1
t(a− 1)δi
i . (11) 

Let’s denote xi = (1, ln(Si))
′, β2 = (β20, β21)

′. The shape parameter a is 
empirically found to be dependent on the failure mechanism [43,44]. In 
the context of low-cycle fatigue, where the failure mechanisms are 
assumed to be consistent across different stress levels, the shape 
parameter is considered fixed, meaning it is independent of the stress 
level. To construct the S-N curves in Basquin relation form, we introduce 
the stress by the scale parameter b, i.e., lnb = x′

iβ2. Then the likelihood 
function for the Weibull regression model is as 

L(D|a, β2) = a
∑n

i=1
δi exp

{
∑n

i=1

[
aδix′

iβ2 − ta
i exp(− ax′

iβ2)
]
}
∏n

i=1
t(a− 1)δi
i . (12) 

To develop Bayesian inference, the prior distributions for a and β2 are 
required. Firstly, we take that priors are independent, i.e., p(a, β2) =

p(a)p(β2). In addition, we take the Half-Cauchy distribution as the prior 
distribution of a, the multi-normal distribution as the prior distribution 
of β2. That is, 

a ∼ halfcauchy(a0),

β2 ∼ N(μ0,Σ0).

Then according the Bayesian theorem, the joint posterior distribu-
tion for (α,β2) on which inference is based is given by 

p(a, β2|D)∝L(D|a, β2) × p(a|a0) × p(β2|μ0,Σ0) (13) 

Similarly, the Bayesian inference based on Eq. (13) is carried out via 
the joint posterior samples, which can be drawn with a component-wise 
Adaptive Metropolis algorithm. 

3.3. Bayesian model averaging for S-N curves 

In engineering applications, parametric mechanism models are 
commonly constructed to depict the underlying mechanism of the sys-
tem response to infer the future behavior of the system [22]. Meanwhile, 
the uncertainty is introduced during the inference process because of 
model uncertainty, which mainly comes from three aspects: (l) model 
expression, (II) the probability distribution for the measurement, and 
(III) model parameter. And the first two points are collectively referred 
to as model form. 

In fatigue life analysis, a well-established empirical model [45] or a 
physical model, such as the Basquin relation, is usually used to describe 
the relationship between fatigue mechanism and the stress variable. 
Therefore, we mainly consider the latter two aspects of uncertainty, 
which are handled by a two-level hierarchical Bayesian inference 

structure. Specifically, the firstly level is used to treat the distribution 
uncertainty (as discussed in Section 2.2, only two candidate models, M1 
and M2), and the second level is used to dispose of the model parameter 
uncertainty. 

Generally, when multiple distribution forms are suitable for 
describing the quantity of interest, the BMA method can be used to 
propagate the distribution uncertainty into the prediction of system 
response [46]. The basic idea of BMA is firstly to estimate some quantity 
under each model Mi,i = 1,2, and then to average the estimates based on 
posterior probabilities of models [47,48]. In this paper, Bayesian model 
averaging is employed to derive the probabilistic S-N curves. Based on 
the observation data D = {(Si, ti,δi)|i = 1,2,⋯,n}, it gives the posterior 
distribution of the tp(s), i.e., the p quantile of the life at stress level s as 

p(tp(s)|D) =
∑2

i=1
p(tp(s)|D,Mi)Pr(Mi|D) (14)  

where p(tp(s)|D,Mi) is the posterior density of tp(s) by assuming that Mi,

i = 1,2 is the true model. p(tp(s)|D,M1) and p(tp(s)|D,M2) can be ob-
tained according to the illustration in Sections 3.1 and 3.2, respectively. 
Besides, Pr(Mi|D) is the posterior probability that Mi is true, which can 
be given by 

Pr(Mi|D)∝Pr(Mi)p(t|Mi) (15)  

where p(t|Mi) is density of t under Mi, and Pr(Mi) is the prior probabil-
ities of model Mi. As is commonly done, we choose Pr(Mi) = 1/2 for no 
extra available information. Based on the Bayes’ theorem, the posterior 
for model Mi can be given by 

Pr(Mi|D) =
mi

∑2
j=1mj

(16)  

where 

mr =

∫

Lr(θr)π(θr)dθr (17)  

and Lr(θr) is the likelihood function under model Mr, π(θr) is the prior 
distribution of θr. A popular way for handling both the prior distribution 
problem and the integration problem is to compute an approximation to 
mr that does not depend on the prior [49,50]. Let ℓ(θ) = ln(L(θ)), and let 
θ̂ denote the maximum likelihood estimator. The approximation to mr is 
as follows: 

m̂r = exp
(

ℓr(θ̂r) −
dr

2
lnn

)

(18)  

where dr is the number of components of θr. 
The mean and variance of tp is then constructed as [25,51]: 

E
[
tp|D

]
=

∑2

k=1
p(Mk|D)E

[
tp|Mk,D

]
(19)  

Var
(
tp|D

)
=

∑K

k=1
p(Mk|D)

{
Var

(
tp|Mk,D

)
+
[
E(tp|Mk,D) − E(tp|D)

]2
}

(20)  

where E
[
tp|Mk,D

]
and Var

[
tp|Mk,D

]
are the expectation and variance 

under model Mk given data D, respectively; p(Mk|D) is the posterior 
model probability of model Mk; The term 

[
E(tp|Mk,D) − E(tp|D)

]2 is the 
between-model variability in the posterior mean of the quantity tp. It is 
evident that the variance of the BMA probability distribution function 
contains two components: the within-model error variance and the 
between-model variance. These components indicate that the BMA 
model can provide a more reliable description of the total predictive 
uncertainty than the ‘best’ model based on some selection criterion. 
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4. Numerical experiments 

4.1. Simulation data experiments 

In contrast to the fatigue life property of practical engineering ma-
terials, where the underlying distribution may be unknown or a mixture 
of multiple distributions [19,20], we initially generated fatigue data 
with known life distributions by statistical simulation for evaluating the 
predictability and reliability of the proposed BMA model across different 
distribution scenarios. We considered three commonly employed prob-
ability distribution models in engineering: Lognormal, Weibull, and Log- 
logistic distributions (Appendix A). For each distribution, we predefined 
specified parameters, which are used to generate random fatigue life. 
The corresponding pre-specified parameters are provided in Table 1. 
The fatigue life is generated under five stress levels (120Mpa, 160Mpa, 
200Mpa, 240Mpa, and 280Mpa). 

Taking the Weibull distribution scenario as an example, the distri-
bution of fatigue life NS at a specific stress level S obeys the Weibull 
distribution characterized by a shape parameter a and a scale parameter 
b, that is NS ~ Weibull (a, b). According to Section 3.2, the stress level S is 
introduced by the scale parameter b = exp(β0 + β1ln(S)), with consid-
ering the special Basquin model for the relationship between the 
expectation of fatigue life and the stress level. Then the scale parameter 
b is determined by β0, β1 and a specific stress level value S. Subsequently, 
the fatigue data can then be simulated by generating random numbers 
following the Weibull distribution Weibull(a, exp(β0 + β1ln(S))). 

Similarly, the location parameter μ in the Lognormal distribution 
scenario is considered with stress level dependence as μ = β0 + β1ln(S). 
Then, the simulated fatigue life can be generated by generating random 
numbers following the Lognormal distribution LN(exp(β0 + β1ln(S)),σ2). 
The scale parameter λ in the Log-logistic distribution scenario is 
considered with stress level dependence as lnλ = β0 + β1ln(S). Then, the 
simulated fatigue life can be generated by generating random numbers 
following the Log-logistic distribution LG(k, exp(β0 + β1ln(S))), where k 
is shape parameter. 

For each simulation scenario, we generate a total of 20 data points 
representing fatigue lives at each stress level. The simulated fatigue data 
is illustrated in Fig. 2, with fatigue life represented by red circles and 

right-censored (runout) data indicated by green triangle symbols. 
After generating simulated fatigue data, for Bayesian inference, 

vague prior distributions are adopted here, i.e., β0 ∼ N(0,10002), β1 ∼

N(0, 10002), σ ∼ halfcauchy(25), a ∼ halfcauchy(25). In specific, by 
setting the mean to 0, we are not assuming any specific direction or 
magnitude for the coefficients. The large standard deviation of 1000 
indicates a wide range of plausible values for the coefficients, allowing 
the data to have a stronger influence on the posterior distribution. Be-
sides, Half-Cauchy distribution is commonly considered non- 
informative or weakly informative. For each Markov chain, 100,000 
samples are obtained, and the first 3000 is discarded due to burn-in. 
Besides, to reduce the autocorrelation consecutive samples, every 20 
sample in the chain is kept, while the others are discarded. 

In compliance with the ASTM E739-91 standard, extensively 
employed in the construction of S-N or ε-N curves, it is imperative to 
restrict the curves within the bounds of available experimental data. 
Extrapolating these curves to predict fatigue life for particular stress or 
strain ranges, especially when targeting reliability levels above 95 % or 
failure likelihoods below 5 %, is not recommended [52]. Therefore, the 
posterior of the 0.05 log-life quantile (lnt0.05) is then simulated at a stress 
level of 180 MPa to evaluate the performance of the BMA model. Be-
sides, the BMA model is compared with the Bayesian Lognormal 
regression model (LNR) and the Bayesian Weibull regression model 
(WBR). 

The histograms of the predicted lnt0.05 are presented in Fig. 3. The 
prediction performance of the LNR, WBR, and BMA models on the 
simulated data with Lognormal distribution is shown in Fig. 3a, 3d, and 
3 g, respectively. Comparing them to the true value of 119617, the mean 
posterior estimates obtained from the LNR, WBR, and BMA models are 
156051, 77505, and 118212, respectively. Notably, the BMA model 
provides a posterior estimation of 118212, which is little lower than the 
true value, but exhibits the closest estimation to the true value. The LNR 
model did not perform optimally because the amount of data was 
insufficient to obtain accurate distributions and parameter estimates, 
which also confirms the necessity of considering model and parameter 
uncertainties. Besides, it is noteworthy that the LNR model over-
estimates reliability, which can be risky as it may result in a false sense of 
security. This can lead to inadequate safety measures, insufficient 
maintenance schedules, or improper design considerations, thereby 
increasing the likelihood of failures, breakdowns, or catastrophic events. 
On the contrary, the WBR model, which assumes that the data is 
generated from a Weibull distribution, demonstrates the weakest esti-
mation capability as it deviates noticeably from the actual fatigue data 
with their inherent distributions. This significantly underestimation can 
lead to overdesign, excessive costs, and flawed decision-making. We also 

Table 1 
The details of the simulation scenarios.  

Underlying distribution Parameters 

Lognormal β0 = 25.8,β1 = − 2.4,σ = 1.0 
Weibull β0 = 25.8,β1 = − 2.4,a = 2.1 
Log-logistic β0 = 6.58× 104,β1 = − 268,k = 1.5  

Fig. 2. Simulated fatigue data of the stress-cycle life relationship with different distribution models. The given three distribution underlying distributions are 
(a) Lognormal, (b) Weibull, and (c) Log-logistic, respectively. 
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Fig. 3. Predictability of three different models on 0.05 quantile of log-life simulated from three different underlying distributions. Prediction results from 
three models are: (a ~ c) the Bayesian Lognormal regression model, (d ~ f) the Bayesian Weibull regression model, and (g ~ i) the BMA model. The fatigue data 
simulated from three different underlying distribution models are: (a, d, g) the Lognormal distribution, (b, e, h) the Weibull distribution, and (c, f, i) the Log-logistic 
distribution. The solid red line represents the true value of the lnt0.025, and the black dotted line represents the mean of the posterior samples. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 4. Validation on the probability prediction of P-S-N curves (5% failure probability). Simulated data are generated from three different underlying dis-
tributions. Specifically, (a) the Lognormal distribution, (b) the Weibull distribution, and (c) the Log-logistic distribution. 
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applied different underlying distributions (Weibull and Log-logistic 
distributions) to check the predictability of the three regression 
models in Fig. 3. In the case of the Weibull underlying distribution, the 
true value and its corresponding three prediction results, as shown in 
Fig. 3b, 3e, and 3 h, are 150621, 156327, 133350, and 144400, 
respectively. As for the Log-logistic underlying distribution, the true 
value and its three prediction results, as shown in Fig. 3c, 3f, and 3i, are 
9046, 11544, 3292, and 7709, respectively. Similarly, the LNR model 
demonstrates an overestimation, while the WBR model yields substan-
tially lower estimations. The BMA model shows the highest robustness of 
the predictability, with predictive results relatively close to the true 
values and without overestimating reliability. 

The prediction results on the 95 % probability of survival P-S-N 
curves are presented in Fig. 4. The subplots (Fig. 4a, 4b, and 4c) display 
the true P-S-N curves with a 5 % failure probability, along with the 
estimated P-S-N curve from each model on fatigue data generated from 
different underlying distributions. Specifically, for the fatigue data with 
the underlying Lognormal distribution form (Fig. 4a), the BMA model, 

which combines a weighted average of the Lognormal and Weibull 
regression models, provides a best evaluation of the failure probability 
compared with the LNR and WBR models. The LNR model overestimates 
the P-S-N curves with a 5 % failure probability. The WBR regression 
model shows the poorest predictability among the three models. Simi-
larly, the BMA model can moderately evaluate the probability of the 
fatigue data with the underlying Weibull distribution in Fig. 4b. 

For the simulation data generated from a Log-logistic distribution 
model, which falls outside the scope of the given models (LNR and WBR) 
in this paper, the estimated results from the LNR model are closer to the 
true values that those from the WBR model. This is because the 
Lognormal and Log-logistic distributions are very similar in shape [30]. 
To further evaluate the performance of the proposed model, the Log- 
logistic regression model is added to the model space of BMA3. In 
other words, the BMA3 model incorporates the Lognormal regression 
model, the Weibull regression model, and the Log-logistic regression 
model. The effectiveness of the BMA3 model is evident in Fig. 4c, where 
it provides more accurate prediction results for the P-S-N curve with 5 % 

Fig. 5. Predictability to the probability S-N curves of the experimental fatigue data in the 2024-T4 aluminum alloy. (a) S-N curves, (b) P-S-N curves with 5% 
failure probability. 

Fig. 6. Reliability of the 2024-T4 aluminum alloy at different stress levels. The corresponding stress levels are: (a) 371.7 MPa, (b) 411.7 MPa, (c) 451.7 MPa, (d) 
490.3 MPa, (e) 530.3 MPa, and (f) 550.3 MPa, respectively. 
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failure probability compared to the BMA model. The BMA3 model 
demonstrates higher accuracy in capturing the characteristic of data 
simulated from the Log-logistic distribution, thereby improving the 
reliability of the predictions. 

4.2. Verification from the experimental fatigue data 

In this section, we assess the performance of the BMA model by 
predicting the failure probability of experimental fatigue data for the 
2024-T4 aluminum alloy [53]. As depicted in Fig. 5, the dataset consists 

of 171 experimental data points at six different stress levels. Fig. 5a il-
lustrates the S-N curves estimated by the LNR model, WBR model and 
BMA model. It can be observed that the estimated curves from these 
three models closely overlap with each other and align well with the 
medians of the experimental results. They all obeys the power law model 
(that is the S-N curve). The estimated P-S-N curves with 5 % failure 
probability (or 95 % survival probability) are presented in Fig. 5b. The 
estimation results obtained from the LNR model are significantly lower 
than all the experimental results, indicating a conservative estimation. 
Approximately five experimental data points are closely aligned with 

Fig. 7. Distributions of fatigue lives for the 2024-T4 aluminum alloy at different stress levels in double logarithmic coordinates. Red dots are tested fatigue 
data points, the purple line denotes the predicted probability density of fatigue life at each stress level from the BMA model, and green dotted lines are the predicted 
survival fatigue probability with the 50% and 95% reliability, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred 
to the web version of this article.) 

Fig. B1. Distributions of fatigue lives for the 2024-T4 aluminum alloy at different stress levels in linear coordinates. Red dots are tested fatigue data points, 
the purple line denotes the predicted probability density of fatigue life at each stress level from the BMA model, and green dotted lines are the predicted survival 
fatigue probability with the 50% and 95% reliability, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.) 
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the P-S-N curve estimated by the WBR model, suggesting that the WBR 
model might be overly optimistic in its estimation. The BMA estimation, 
which is a weighted average of the two, is considered to be relatively 
appropriate. 

To further validate the reliability of the BMA model on fatigue dis-
tribution property of the 2024-T4 aluminum alloy at different stress 
levels, we here used the Kaplan-Meier (K-M) estimator as the product 
limit reliability estimator for estimating the reliability function, also 
known as the survival function of a product’s life [15,29]. What makes 
the K-M estimator particularly valuable is its ability to estimate the 
reliability without making any assumptions about the underlying dis-
tribution of failure times. Its operation involves dividing time into in-
tervals and calculating survival probabilities for each interval. These 
interval-based probabilities are then multiplied to estimate the overall 
survival curve. As a result, it often generates a step-like, staircase pattern 
in its graph, reflecting changes in the survival or reliability function at 
observed event times. 

The K-M estimator and the reliability estimates from each model 
across various stress levels are illustrated in Fig. 6. Overall, the reli-
ability estimates from each model are relatively close to each other and 
closely resemble the K-M estimator, especially the BMA model. At high 
survival probabilities (or high reliability), the model estimates are 
relatively conservative compared to the Kaplan-Meier (K-M) estimator. 
However, at low survival probabilities, the model estimates tend to be 
more aggressive than the K-M estimator. 

In Fig. 7, we showcase the comprehensive prediction performance of 
the BMA model in double logarithmic coordinates regarding the fatigue 
properties of the 2024-T4 aluminum alloy (Fig. B1 in Appendix B dis-
plays it in linear coordinates). As the applied stress level decreases 
within the tested materials, the corresponding fatigue life increases, and 
the scatter bandwidth of the fatigue life distributions tends to widen. 
Notably, the BMA model accurately captures the distribution evolution 
across different stress levels, and effectively represents the observed 
trend. Additionally, Fig. 7 presents the 50 % and 95 % reliability pre-
dictions, which closely align with experimental observations and find-
ings from other studies [54–56]. These findings further support the 
robustness and reliability of the BMA model in assessing the fatigue 
behavior of the 2024-T4 aluminum alloy. 

5. Discussions and conclusions 

Reliability analysis of engineering components or structures heavily 
relies on accurately capturing the fatigue properties of materials. 
However, the fatigue life associated with stress exhibits significant 

variability, leading to wide scatter in the data. There exists considerable 
uncertainty regarding both the distribution form and value within the 
fatigue data. These make great challenges to construct a robust proba-
bility fatigue model for materials and accurately predict the service lives 
of components and structures. The ‘classical’ method typically involves 
fitting a single distribution to the observed fatigue life data. However, 
the predictability of the classical method heavily relies on the precise 
understanding of the fatigue mechanisms of practical engineering ma-
terials or a large amount of fatigue life data. Consequently, its applica-
bility is relatively poor when dealing with different materials. 

To address the uncertainty in model selection and the lack of 
consensus on the best representation of the data, we propose the use of 
Bayesian model averaging to incorporate model form uncertainty into 
the estimation of the probability density of fatigue life [46]. By 
considering a range of possible distributions, the BMA method offers a 
more flexible and robust approach that can better account for uncer-
tainty and variability in the data. This is particularly when the true 
underlying distribution is not well-known or when there is significant 
variability in the fatigue life data. We demonstrate the performance of 
BMA through numerical experiments using simulated and real data. The 
results highlight the robustness and reliability of BMA compared to in-
dividual models, as it effectively incorporates model form uncertainty. 

To further enhance the approach, it is valuable to broaden the scope 
of candidate models within the model space. The 3-parameter Weibull 
distribution represents another fitting option for fatigue life probability 
estimation [57,58]. It offers improved fitting capabilities to data 
exhibiting varying hazard rates over time, achieved through the inclu-
sion of an additional location parameter when compared to the 2-param-
eter Weibull distribution. Subsequently, we proceed to validate the 
predictability of distinct models: the LNR model, the 3-parameter Wei-
bull regression model (3PWBR), the BMA model containing both LNR 
model and 3PWBR model. For this validation, two sets of simulated 
fatigue data are utilized- one characterized by an underlying Lognormal 
distribution (Fig. C1a), and the other by a 3-parameter Weibull distri-
bution (Fig. C1b). Fig. C1a illustrates that the 3PWBR model deviates 
significantly in predicting the 5 % failure probability for the fatigue data 
governed by the underlying Lognormal distribution. In contrast, the 
BMA model demonstrates precise prediction of the 5 % failure proba-
bility with high accuracy for the both sets of fatigue data with different 
underlying distributions in Fig. C1a and Fig. C1b. By considering various 
potential model forms and parameter configurations, BMA can 
comprehensively account for underlying uncertainties and variabilities. 
This expanded model space enables BMA to provide more comprehen-
sive and robust model inference and predictions, effectively addressing 

Fig. C1. Validation on the probability prediction of P-S-N curves (5 % failure probability). Simulated data are generated from two different underlying 
distributions: (a) fatigue data with the underlying Lognormal distribution, where σ = 1.0, μ = 25.8 − 2.4ln(S) and (b) fatigue data with the underlying 3-parameter 
Weibull distribution, where shape parameter a = 2.1, scale parameter b(S) = exp(25.8 − 2.4ln(S)), and location parameter ϛ(S) = exp(10 − 0.2ln(S)). 
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the uncertainty associated with the true model. 
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Appendix A:. Log-logistic distribution 

The Log-logistic distribution with shape parameter k > 0 and scale parameter λ > 0 has probability density function 

f (t|k, λ) =
k
λ

(
t
λ

)k− 1

[
1 +

(
t
λ

)k
]2 

The probability distribution function is 

F(t|k, λ) = 1 −
1

1 +
(

t
λ

)k 

In Section 4.1, to generate simulation data, we introduce the stress using lnλ = β0 + β1x, where x represents the logarithm of the stress level. 

Appendix B:. Distributions of fatigue lives for the 2024-T4 aluminum alloy in linear coordinates 

(See Fig. B1) 

Appendix C:. Modeling S-N curves with 3-parameter Weibull distribution 

The three-parameter Weibull is often proposed in the fatigue literature as an appropriate model [57,58]. The cumulative distribution function has 
the form 

F(ti|a, b, ζ) = 1 − exp
{

−

[
ti − ζ(Si)

b(Si)

]a }

. (C.1)  

where a is the shape parameter for fatigue life; b(Si) is the scale parameter describe by following relationship: ln(b(Si)) = α0 + α1⋅ln(Si); ζ(Si) is the 
location parameter describe by following relationship: ln(ζ(Si)) = λ0 + λ1ln(Si). The 3-parameter Weibull appears to be attractive because the location 
parameter ζ(Si) defines a non-zero lower bound on the sample space. 

Considering the aforementioned 3-parameter Weibull regression model (3PWBR) as a candidate model within the BMA framework, the parameters 
can be estimated by Bayesian analysis, as introduced in Section 3.2. The weight of the 3PWBR model can be approximately calculated based on Eq. 
(16) and Eq. (18). Subsequently, the p quantile of the fatigue life can be obtained using Eq. (14). 

(See Fig. C1). 
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