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Abstract— Special relationship exists between environmental
conditions and discharge characteristic parameters in microgap
electrostatic discharge (ESD) events. Potential relations between
input and output of neural network can be explored if taken
discharge environmental factors as neural network input. The
characteristic parameters of discharge results are affected by
environmental conditions, and hence, discharge parameters can
be described with an output of neural network. Circumstances
factors effect on discharge parameters in microgap ESD result
was analyzed with two algorithms of neural network wavelet
transform combined with Kalman filter. Nonlinear relationship
between circumstances conditions and discharge result effect was
a feature in microgap ESD events. Strong positive relationship
existed between discharge parameters and circumstances fac-
tors of electrode moving speed, gas pressure, and temperature.
Characteristic parameters measured in real ESD experiment
were compared to predictive parameters of calculation result
from neural network algorithm. The analysis of accuracies was
given on the prediction of discharge process trend compared
to discharge current data measured in experiment. Noise in
discharge current waveforms can be suppressed effectively with
the method of wavelet transform combined with Kalman filter.

Index Terms— Characteristic parameters, electrostatic dis-
charge (ESD), Kalman filter, neural network, wavelet.

I. INTRODUCTION
ISCHARGE result in real electrostatic discharge (ESD)
events may be changed much with different circum-
stances factors, even if voltage on charged object is identical in
multiple test times. Daoud et al. [1] proposed the viewpoint of
electrode approach speed affecting on rise slope in discharge
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current. Other researchers [2], [3], [4], [5], [6] paid more
attention for electrode moving speed and circumstances effect
on discharge parameters. During applying the international
standard [7] IEC610000-4-2 for practice measurement of ESD,
test results have usually shown discreteness and low repeatabil-
ity. Some potential relationship, as a matter of fact, may exist
between discharge parameters and circumstances factors of
electrode moving speed, gas pressure, and temperature. Neural
network [8], as the basic method of deep leaning and artificial
intelligence (Al), has been applied and extended into various
fields of research [9], [10], [11], [12], [13], [14]. In order
to search the relationship of discharge parameters changed
with circumstances factors, a neural network can be applied
for ESD events process analysis. Electrode moving speed,
temperature, and gas pressure can be viewed as self-variables
and used as input variables of a neural network. In contrast,
characteristic parameters in ESD process are viewed as the
function of input variables in neural network. So, potential
relationships were researched on discharge results parameters
varied with circumstances factors through analyzing the rela-
tionships between the output and input of a neural network.
Based on neural network algorithms and wavelet transform
combined with Kalman filter, investigation was performed on
potential extrapolation relationship of discharge parameters
variation with circumstances factors and on noise suppression
in discharge current in the ESD process. The properties of
discharge parameters in microgap ESD events, considering
the effect of circumstances factors, were described through
algorithms related to Al and wavelet transform.

The structure in this paper was arranged as the following:
at the first, introduction was given on research background
in Section I, then a special new measurement system of
ESD was described in Section II for further effect discussion
of circumstances conditions on discharge result parameters.
In Section III, the effect of circumstance factors on discharge
parameters was analyzed based on a neural network algorithm
and the real data measured in the experiment with new ESD
measurement system. In Section IV, the analysis of noise
suppressing in ESD current waveform was given with the
algorithm of a wavelet transform and Kalman filter. At the
last, in Section V, a conclusion was provided.

II. SPECIAL MEASUREMENT SETUP

ESD result may be affected by various circumstances fac-
tors. Our team has researched and created a special experiment
system [15] used to investigate the effect of electrode moving
speed on discharge result parameters in ESD event.

The new ESD measurement system structure (seen in Fig. 1)
consists of the following sections.

1) Sealed chamber.

2) Crankshaft connecting rod.
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Fig. 1. New experimental system of electrode moving speed effect in ESD.

3) Driving motor with controlling module.

4) ESD generator (ESD gun).

5) Discharge target.

6) Gas pressure meter and controller.

7) Temperature and humidity meter.

8) High-voltage supply.

9) Digital oscilloscope.

10) Vacuum pump, camera, and wireless router.

Discharge target is mounted on a sidewall of the sealed
chamber. Driving motor is fixed on the holder at the bottom of
the chamber. ESD gun can be moved forward and backward
along the guide rails between the motor and the discharge
target. Gas pressure in the closed chamber can be adjusted
through controlling a vacuum pump connected to the sealed
chamber with a pipeline. Gas pressure meter is fixed on the top
surface of the box, which displays real-time negative pressure
value in the chamber.

A Tektronix digital oscilloscope (BW2.5 GHz, sampling
rate 40 GHz) is connected to the discharge target for measure-
ment data acquisition. Discharge current waveforms are stored
and displayed by the oscilloscope. The new ESD experiment
prototype setup is shown in Fig. 2.

ESD experiment was performed under initial conditions of
starting temperature 7 = 20 °C and relative humidity of
RH = 56, respectively. ESD result may be varied much for
different speeds of electrode moving to the target, even the
charge voltage applied to ESD gun is identical in different
test times. With moving electrode (fixed on the front terminal
of ESD gun) at different speeds to the target, the discharge
parameters of current peaks, rise time, peak of current deriva-
tive, and gap length can be measured and calculated in the
experiment of ESD with the new experimental setup.

Changing frequency in control module of step motor, one
can adjust the speed of electrode moving to the target. The
speed range of moving electrode to the target is in 1-100 cm/s.
Discharge parameters’ difference may be drastically remark-
able due to slow speed and large speed of moving electrode.
The lager the speed of electrode moving speed to the target,
the higher the peak value of discharge current, the steeper of
rise slope in discharge current, and the shorter of arc length.

III. EFFECT ANALYSIS OF CIRCUMSTANCES ON
DISCHARGE PARAMETERS WITH NEURAL NETWORK

In real ESD events, discharge result can be affected by
various factors in circumstances. The investigation of relation-
ship between circumstances factors and discharge parameters
will be benefit to the protection of electronic equipment and

Fig. 2. Picture of the new ESD experiment setup for speed effect
investigation.
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Fig. 3. MP model of neural network.

device from the harm of ESD. The simulation of experiment,
in the following section, with a linear neural network was
used to discuss the effect on discharge parameters of different
circumstances factors. A neural network model (as shown in
Fig. 3) proposed by W. S. McCulloch and W. Pits (the so-
called MP model) can be a useful tool to analyze discharge
result parameters in ESD events.

Based on neural network model shown in Fig. 3, three main
steps were considered as follows.

1) Supplying input data and obtaining output data.
2) Substituting the data and conducting circling training.
3) Determining prioritized value and the threshold value.

Assuming N neurons are interconnected, the activation
state of any one neuron x; (i = 1,2,3,...,N)is 1 or O,
representing excitement or inhibition, respectively. Training
process is much important in the whole linear simulating
process.

The error of neural network in the training process is a
multidimension paraboloid. Training process is based on the
principle of the least square root of gradient fall. The best
solution is the basement for a linear neural network, as the
learning rate is low enough.

A model can be established based on the previous analysis
related to discharge parameters variation; input variable and
output variables can also be determined with the establishment
of the model. Initial data come from measurement result with
the experimental system of ESD. Main circumstances factors
during the process of ESD taking place include electrode
moving speed to the target, gas pressure, temperature, and
relative humidity. Electrode moving speed effect on discharge
current parameters and influence on discharge current rise time
of gas pressure will be discussed in the following.
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TABLE I

LINEAR MODEL INPUT AND OUTPUT DATA OF ESD
AFFECTED BY ELECTRODE MOVING SPEED

Input moving speed | 05 (09 0,13 0.18 0.22 027 031

speed(m/s)
outputl peak current(A) | 1.56 1.70 1.99 2.14 2.23 2.26 2.56
output2 rise slope(A/ns) | 0.96 1.24 1.64 1.88 1.92 2.01 2.13
output3 fall slope(A/ns) | 1.84 2.23 2.48 2.61 2.84 2.85 2.81

moving speed
Input speed(m/s) 0.35 0.39 0.42 0.45
outputl peak current(A) | 2.47 2.58 2.61 2.63
output2 rise slope(A/ns) | 2.32 2.48 2.60 2.71
output3 fall slope(A/ns) | 2.89 2.96 3.10 3.22
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Fig. 4. Relationship of peak discharge current with electrode moving speed.
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Fig. 5. Relationship between iteration number and mean square error.

A. Effect on Discharge Current Parameters of Electrode
Moving Speed

The speed moving electrode to the target has strong influ-
ence on discharge parameters (seen in Table I).

It can also be seen in Table I that three output variables
correspond to one input variable, which denotes that the
process of three linear fitting calculations will be performed
separately. Based on the data in Table I, the fitting result was
given in Fig. 4.

The analysis of relationship between discharge parameters
and electrode speed moving to the target can be exerted.
According to the data measured in ESD experiment, peak
current values increase with an electrode speed moving to
the target. The relationship between peak current of ESD and
electrode moving speed can be seen distinctly through the
linear fitting to the data measured.

With the increase of iteration number, mean square error,
seen in Fig. 5, falls rapidly at first and then approaches
gradually flat, which means the best-fitting straight line. Good
agreement has been obtained by the comparison of results
between theoretical analysis and neural network analysis. The
consequence has verified distinctively that strong positive
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Fig. 6. Electrode moving speed on discharge current peak values obtained,
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Fig. 7. Potential of electrode moving speed on discharge current peak values
obtained, respectively, by practical measurement, network output, and BP
neural network prediction.

co-relationship exists between electrode moving speed to the
target and discharge current peak values.

Discharge current peak values variation with circumstances
factors can be predicted with back propagation neural network
(BP neural network) method plus genetic algorithm. Shown
in Figs. 6 and 7 are discharge current peak values obtained
by real experiment measurement, network output, and BP
neural network plus genetic algorithm, respectively, in which
discharge current peak potential change was predicted in
Fig. 7. Difference of discharge current peak values between
measured and predictive ones with BP neural network is given
in Fig. 8, in which maximum (0.078), minimum (0.009), and
average (0.0479) values of the difference are also provided.
The accuracy of predictive discharge current peak values
with BP neural network algorithm was shown in Table II.
As shown in Table II, the predictive accuracy of all data
exceeds 90%.

B. Effect Analysis of Gas Pressure on Rise Slope Time With
Neural Network

After optimization with genetic neural network, the simu-
lation of relationship between gas pressure and rise time in
discharge current is shown in Fig. 9. Fitting degree of training
compared to real data, seen from Fig. 9, is much high because
of applying genetic neural network, reached much good effect
than the traditional network. Potential variation of rise time
in discharge current can be seen in Fig. 10. On the other
hand, Table III provided comparison between measured data
and predictive data. The accuracy degree of all predictive data,
seen in Table III, is over 90%.
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Fig. 8. Difference of discharge current peak values between measured and
predicted with BP neural network and maximum, minimum, and average
values.

TABLE I

ACCURACY OF PREDICTION BY COMPARISON BETWEEN MEASURED PEAK
VALUES OF DISCHARGE CURRENT AND PREDICTIVE ONES

Electrode

moving speed 0.11  0.16 0.23 0.29 0.39

(m/s)

Peak values 1.884 2.088 2.182 2.232 2.56

measured (A)

Predictive 1.85  2.109 2.11 2.31 2.48

values (A)

Accuracy (%) 98.2 99.0 96.7 96.5 96.9

Electrode

moving speed 0.49 0.51 0.54 0.57 0.6

(m/s)

Peak values 2,692 272 2754  2.782 2.816

measured (A)

Predictive 2.733 2.742  2.745 2.741 2.735

values (A)

Accuracy (%) 98.4 99.2 99.7 98.5 97.2
TABLE III

DATA COMPARISON BETWEEN REAL MEASURED RISE TIME AND
PREDICTIVE RISE TIME WITH GENETIC BP NETWORK

Gas pressure (MPa) 0.067 0.079 0.087 0.091 0.099
Measured rise time (ns) | 0.73 0.75 0.76 0.76 0.78
Predictive rise time (ns) | 0.73 0.72 0.71 0.71 0.74
Accuracy (%) 100.0 96.0 934 934 949
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Fig. 9. Measured and BP network predictive relationships between gas
pressure rise time and gas pressure.

IV. NOISE SUPPRESSING IN ESD CURRENT WITH
WAVELET TRANSFORM AND KALMAN FILTER

Noise suppressing is a special concerned task in ESD
current analysis. In signals analysis and processing wavelet
transform is a much useful tool. A function, based on
wavelet transform and its associate inversion formula, can be
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decompose into weighted sum of its various frequency compo-
nents. The main idea suppressing noise with wavelet transform
is that selecting proper wavelet function and layers of decom-
position, which are used to process discharge current signal.
Outline information in ESD current waveform, in wavelet
scaling coefficients, mainly locates in low-frequency area,
but noise in ESD current waveform mainly locates in high-
frequency area. Wavelet transform scaling coefficients corre-
sponding useful outline information in discharge current have
the features of comparative large amplitude and less coefficient
number.

On the other hand, wavelet scaling coefficients correspond-
ing noise have the feature of small amplitude values and
multiple coefficient number.

Noise suppressing with the threshold value of wavelet
transform has the following steps.

1) Wavelet transform in one dimension—selecting proper
wavelet and decomposing layers(N), calculating scaling
coefficient at layer N (low-frequency region), and cal-
culating coefficients on layers 1 ~ N (high frequency).

2) Quantification of wavelet coefficient threshold values—
noise of ESD current distribute mainly in wavelet coef-
ficients; setting proper values for wavelet coefficients at
various layers; and making quantification of threshold
values.

3) Wavelet reconstruction of one dimension signal—
reconstructing suppressed noise ESD current signal
based on wavelet coefficients after processing with
wavelet transform coefficients and threshold method.

How to select threshold values and their quantification are
key steps in processing the signals, which has direct impact on
effect suppressing noise. Method selecting threshold values in
wavelet transform, therefore, can be used to process various
layers of wavelet transform coefficients and then reconstruct
current signal and realize objective to suppress noise.

Kalman filter is a recursive algorithm of linear minimum
variance estimation, which is used to process random sig-
nal and has no deviation. Kalman filter is used to estimate
signal-based system equations and observed equations, which
use observed noise and system noise data as an input, while
use predictive estimation values (state and parameters in
system) as an output [16].

ESD current signals can be decomposed with the selection
of proper wavelet function and decompositive multiple lay-
ers [17]. The information of outline on ESD current, when
considering frequency spectrum of ESD current waveform,
mainly distributed in the low-frequency range. The noise in
discharge current waveform, however, is located in the range
of high frequency. Noise in ESD current waveform, therefore,
can be suppressed by removing high components in wavelet
decomposition coefficients. The block diagram was given in
Fig. 11, suppressing noise in ESD current waveform. ESD
current waveform shown in Fig. 12 is the measured result in
the experiment of ESD with a special setup of ESD [15]. The
waveforms shown in Fig. 13 include two discharge current
waveforms, the red line represented that processed discharge
current waveform in Fig. 12 with wavelet transform, while the
blue line shown result processed that in Fig. 12 by wavelet
plus Kalman filter. As shown in Fig. 13, a comparative good
effect of noise suppression has been obtained through wavelet
transform threshold values separation method and wavelet
transform plus Kalman filter.
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Fig. 13. Comparison of noise suppression in discharge current with two
methods.

Comparing difference of discharge current waveforms
between red line in Fig. 13 and discharge current waveform
in Fig. 12, the spikes (thorns) of red line in Fig. 13 are much
less than that in Fig. 12. The effect suppressing noise has
been distinctively with wavelet threshold method. If combined
wavelet transform with Kalman filter, the effect suppressing
noise can be improved more clearly. After being presuppress-
ing with wavelet transform, adaptive Kalman filter algorithm
was used to process the ESD current waveform. The blue line

IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 51, NO. 9, SEPTEMBER 2023

in Fig. 13 is the result processed discharge current in Fig. 12
with waveform transform plus Kalman filter.

As shown in Fig. 13, discharge current waveform shown
by blue line has been purified more fluent and smoother than
that shown by red line. The spike number in discharge current
waveform (blue line), compared to the discharge current wave-
form (red line), was much less than that in the latter (shown
by red line), and hence, the discharge current curve after
processing with wavelet transform plus Kalman filter shown
smooth remarkably than that without processing, in particular
in the range of high frequency.

V. CONCLUSION

Two algorithms related to Al and wavelet transform were
employed to analyze the effect of circumstances factors on
ESD result parameters and to suppress noise in discharge
current. Circumstances conditions variation by changing elec-
trode moving speed to the target and changing gas pressure
can strongly impact on discharge result parameters. Based
on the large number of experimental data measured under
changing electrode moving speed and gas pressure, neural
network algorithms have been applied to analyze and predict
variation of rise time and peak value of discharge current.
The prediction results agreed well with that measured in
ESD experiment. Noise in the discharge current waveform
of ESD can be suppressed effectively with the method of
wavelet transform combined with Kalman filter. The conse-
quence in this work may provide some reference for proposing
a new test standard on noncontact ESD test in coming
time.
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