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The investigation of the converging shock-induced Richtmyer-Meshkov instability, which arises from the
interaction of converging shocks with the interface between materials of differing densities in cylindrical
capsules, is of significant importance in the field of inertial confinement fusion (ICF). The use of converging
shocks, which exhibit higher efficiency than planar shocks in the development of the RMI due to the Bell-Plesset
effects, is particularly relevant to energy production in the ICF. Moreover, external magnetic fields are often
utilized to mitigate the development of the RMI. This paper presents a systematic investigation of the anisotropic
nature of the Richtmyer-Meshkov instability in magnetohydrodynamic induced by the interaction between
converging shocks and perturbed semicylindrical density interfaces (DI) based on numerical simulations using
Athena++. The results reveal that magnetic fields with β = 1000, 100, and 10 (β is defined as the ratio of the
plasma pressure to the magnetic pressure) lead to an anisotropic intensification of magnetic fields, anisotropic
accelerations of various shock waves [including the converging incident shock (CIS), transmitted shock (TS),
and reflected shock (RS)], and anisotropic growth of the DI with subsequent anisotropic vorticity distribution.
Upon closer inspection, it becomes evident that these phenomena are strongly interconnected. In particular, the
region where the wave front of the CIS impacts the middle point of semicylindrical DI, where the magnetic field
is more perpendicular to the fluid motion, experiences a more significant amplification of the magnetic fields.
This generates higher-pressure jumps, which in turn accelerates the shock wave near this region. Furthermore,
the anisotropic amplification of the magnetic fields reduces the movement of the RMI near the middle point
of semicylindrical DI and leads to the anisotropic formation of RMI-induced bubbles and spikes, as well as
vortices. By examining vorticity distributions, the results underscore the crucial role of magnetic tension forces
in inhibiting fluid rotation.
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I. INTRODUCTION

Shock waves accelerating a density interface cause com-
plex physical phenomena, including the interface amplitude
growth, wave pattern evolution, and vorticity generation
[1–3]. Richtmyer introduced the linear theory for this pro-
cess in 1960 [4], which was later confirmed by Meshkov’s
shock tube experiments [5]. This impulsive version of the
Rayleigh-Taylor instability (RTI) [6,7] is known as the
Richtmyer-Meshkov instability (RMI) [8].

Over the past few decades, considerable efforts have been
devoted to studying the RMI in hydrodynamics (Hydro-RMI)
and RMI in magnetohydrodynamics (MHD-RMI) due to their
importance in various engineering applications and univer-
sal occurrence. For instance, in inertial confinement fusion
(ICF), the Hydro-RMI promotes mixing between shell ma-
terial and fuel, leading to a reduction in the compression of
the inner material, thus affecting ICF performance [9–12]. As
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an alternative to ICF, magnetic confinement fusion (MCF)
creates nuclear fusion reactions by confining plasma using
magnetic fields [13]. To counteract the undesired effect of the
Hydro-RMI in ICF, devices based on the idea of magnetized
liner inertial fusion (MagLIF) are under development, which
achieves high fusion yields with relatively low-cost equipment
[14,15]. Hohenberger et al. [16] found that applying external
magnetic fields increases production at the OMEGA Laser
Facility of the Laboratory for Laser Energetics. In supersonic
combustion systems, the Hydro-RMI accelerates the mixing
of fuel and oxidizer, thereby enhancing combustion efficiency
[17]. During a supernova, the interaction between inhomoge-
neous density materials and high Mach number flows triggers
the RMI [18], and the ionized materials of supernova remnants
interact with magnetic fields [19].

The orientation of the initial magnetic field is a crucial
factor in the suppression of the RMI. By investigating the RMI
in an oblique planar contact discontinuity using advanced nu-
merical methods, Samtaney [20] primarily demonstrated that
longitudinal magnetic fields, which are perpendicular to the
incident wave front, can suppress the growth rate of the RMI.
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Wheatley et al. [21] subsequently conducted a study to deter-
mine the detailed mechanism for the suppression of the RMI
also under a longitudinal magnetic field. They noted that the
magnetic field generates a series of planar waves, including
the Alfvén wave, during the refraction process, which effec-
tively transports unstable vorticities away from the density
interface. As a result, the vorticity deposition on the density
interface is reduced, resulting in a smoother interface. To ex-
amine the impact of longitudinal magnetic fields on the RMI,
Wheatley et al. [22] employed the Laplace transform within
the framework of ideal incompressible magnetohydrodynam-
ics (MHD). They solved the linearized initial value problem
analytically and discovered that while the magnetic field did
not affect the initial growth rate of the RMI, it did suppress the
growth rate at a later stage. In the subsequent work, Wheatley
et al. [23] investigated the effects of various initial features,
including the incident shock strength, magnetic field strength,
and perturbation amplitude, on the RMI.

Recent analytical and numerical investigations have fo-
cused on the effect of a transverse magnetic field, which is
parallel to the incident wave front [24–28]. In the framework
of ideal incompressible MHD, Cao et al. [24] illustrated that
the interface instabilities can be stabilized by the Lorentz
force in the transverse magnetic field. In their study, the initial
magnetic field has the same perturbations and jumps just like
the velocity field. Meanwhile, Qiu et al. [29] investigated
the effects of transverse magnetic fields and viscosity on the
RMI. Their analytical study showed that the magnetic field
provides oscillation and damping, while viscosity only pro-
vides damping. By considering a more general case where
the initial magnetic field is uniformly distributed, Wheatley
et al. [27] studied the effect of the transverse magnetic field
on the RMI. In their simulation, magnetic field lines pen-
etrated through perturbed density interfaces, and the results
indicated that the RMI is also suppressed by this kind of
magnetic field. While the RMI is influenced by the magnetic
field, the magnetic field is also influenced by the RMI. Zhang
et al. [28] demonstrated that the magnetic tension generates a
torque on the interface fluid that opposes the torque caused
by the velocity shear, resulting in the suppression of the
Kelvin-Helmholtz instability (KHI) on the density interface.
Combining two-dimensional numerical investigations with
single-mode analysis, Sano et al. [19] demonstrated that mag-
netic fields can be amplified by the RMI. The saturation level
of the magnetic field is determined by the relation between the
thermal pressure and the magnetic pressure.

The preceding analysis of the MHD-RMI primarily centers
on the instability induced by a planar shock. Measuring a
planar shock in a single experiment is relatively straightfor-
ward compared to a converging shock, which intensifies as
it propagates inward, necessitating the consideration of both
temporal and spatial gradients. Thus, earlier investigations of
the Hydro-RMI and MHD-RMI measurements have primar-
ily concentrated on planar geometries. Nevertheless, in ICF,
cylindrical material capsules are used, and the detonation and
chemical reactions are triggered by converging incident shock
waves. Hence, exploring the RMI triggered by converging
incident shocks is more practical and promising.

The investigation of the converging shock-induced Hydro-
RMI, which arises from the interaction of converging shocks

with the interface between materials of differing densities in
cylindrical capsules, is of significant importance in ICF. The
use of converging shocks is particularly relevant to energy
production. This is because the converging configuration ex-
hibits higher efficiency than the planar configuration in RMI
development due to its higher perturbation growth rate, which
is known as the Bell-Plesset effects [30–32]. Mikaelian [33]
extended the linear analysis of Plesset [31] to the spherical
system composing multiple concentric incompressible fluid
shells and investigated the RMI and RTI of the system. Zhang
and Graham [34] conducted one of the early investigations on
Hydro-RMI in cylindrical geometry. Their numerical study
involved examining the imploding and exploding shocks for
both positive and negative Atwood numbers, which are de-
fined as the density difference between two fluids normalized
by their sum. To investigate the linear stability of RMI and
RTI in concentric cylindrical shells, Mikaelian developed a
theoretical model to estimate the mixing layer width between
different fluids [35]. The work of Mikaelian included dis-
cussing the freeze-out phenomena, which leads to a zero
asymptotic growth rate through numerical simulations and
developing a simple model for the evolution of turbulent mix-
ing. Lombardini and Pullin [36] then investigated the RMI in
cylindrical and spherical geometries with azimuthal and axial
perturbations and developed a linear incompressible theory
for the case of an imploding or exploding shock. They devel-
oped a theory for the asymptotic growth rate of perturbations
and derived a unified expression for the asymptotic impulsive
growth rate in planar, cylindrical, and spherical cases. Their
work was complemented and verified by compressible nonlin-
ear simulations with small amplitude perturbations. However,
the model of Lombardini and Pullin did not capture the typical
scenario in converging geometry where the RMI is usually
followed by the RTI due to the continued acceleration or de-
celeration of the interface towards the center of convergence,
depending on the sign of the Atwood number. As the physical
configuration that is relevant to ICF involves a converging
shock, it is of great interest to examine the RMI in a converg-
ing geometry, especially in the presence of a magnetic field,
and investigate any physical mechanisms of suppression. In
the area of experimental investigation, apart from theoretical
and numerical studies, Ding et al. [37] first measured the
perturbation amplitude in the converging Hydro-RMI using
shock tube measurements. To forecast the perturbation growth
in a converging geometry from early to late stages before the
reshock, they introduced a modified model based on Bell’s
equation with the inclusion of a decay factor.

In the context of ICF implosion, the high temperatures
lead to rapid ionization of the involved materials, resulting
in the interaction between the conducting fluids and im-
posed or self-generated magnetic fields [38,39]. Therefore,
the MHD-RMI of the cylindrical density interface driven by
converging shock waves has recently attracted tremendous
attention [26,40–42]. Mostert et al. [40] explored the impact
of seed magnetic fields on the RMI in cylindrical and spherical
scenarios, while Bakhsh et al. [41] observed that compressing
the RMI could be achieved by a magnetic field, given that
the Alfvén wave fronts helped to transport the vorticity. The
research of Mostert et al. [42] presented the effects of octa-
hedrally symmetric magnetic fields on the RMI in spherical
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implosions. Black et al. [43] studied the MHD-RMI evolution
in cylinder cases by varying the magnetic orientation (longitu-
dinal or transverse), Mach number (Ma = 1.2, 1.66, and 2.2),
and magnetic field strengths (100, 250, and 500 G). In the
framework of Hall-magnetohydrodynamics, Shen et al. [44]
presented the suppression of the RMI under the Hall-MHD
description. In their research, they found that when the ion
skin depth is finite, the vorticity dynamics responsible for
the suppression of RMI exhibit significant differences from
the ideal MHD-RMI flow. Most previous MHD studies solely
focused on single-mode density interfaces. However, Dong
et al. [45,46] investigated triangular and cylindrical interfaces
without perturbations and demonstrated that the RMI could
also be suppressed by the magnetic field in closed interfaces.
Using dynamic mode decomposition, Dong et al. [46] showed
that small vorticity structures with high frequencies were
compressed by the magnetic fields. Qin and Dong [26] also
revealed that the growth rate of the RMI and strength of the
induced magnetic fields were determined by the curvature of
the density interface.

The novelty of the present work underpins the deep and
detailed understanding of the anisotropic features of the
MHD-RMI induced by the converging incident shock, which
to our best knowledge, has not yet been systematically stud-
ied. Due to the effect of the directional magnetic fields,
the anisotropic properties of the flow appear [47]. In this
work, the anisotropic amplification of the magnetic fields,
the anisotropic acceleration of the converging incident shock
(CIS), the reflected shock (RS), and transmitted shock (TS), as
well as the anisotropic evolution of the density interfaces and
the vorticities are discussed. Within this paper, we employ the
term “anisotropic” to characterize the flow rather than “asym-
metric”. This choice is made due to the fact that fields such
as density schlieren, vorticity, and magnetic fields maintain
symmetry along specific directions throughout the converging
shock-interface interactions in MHD. The focus of previous
investigations on shock-density interface interactions in the
MHD is on the suppression of the RMI caused by the restoring
magnetic tension force. However, apart from the magnetic
tension force, the magnetic pressure force could also exist
near the density interface with the possibility to affect the
flow field. The acceleration of the solar wind is commonly
attributed to the Alfvén wave, as described in studies such
as De Pontieu et al. [48] and McIntosh et al. [49]. In this
work, we will show when and how the magnetic pressure
force will also affect the evolution of the flow. Furthermore, to
demonstrate that the incident wave and reflected wave speed
could also be influenced by the magnetic field, especially in
the transverse magnetic field, a detailed investigation has been
conducted to show the anisotropic development of the wave
speeds of the CIS, RS, and TS in the MHD cases.

This paper is structured as follows: We first present initial
conditions and the ideal MHD equations and numerical meth-
ods in Sec. II A. Then, the computational setup and validations
are shown in Sec. II B. After that, the results and discussions
are presented in Sec. III, including the anisotropic amplifica-
tion of the magnetic field (Sec. III A), anisotropic acceleration
of shock waves (Sec. III B), and anisotropic density interface
evolution and the vorticity distributions (Sec. III C). In the
end, a summary of this paper is given in Sec. IV.

II. NUMERICAL METHODS
AND COMPUTATIONAL SETUPS

A. Governing equations and numerical methods

MHD is a fluid description of plasmas. The ideal MHD
equations, under the assumptions of compressibility, adia-
baticity, and inviscid flow, are given in nondimensionalized
form as

∂ρ

∂t
+ ∇ · (ρu) = 0, (1)

∂ρu
∂t

+ ∇ · (ρuu − BB) + ∇(p + B2/2) = 0, (2)

∂e

∂t
+ ∇ · [(e + p + B2/2)u − B(B · u)] = 0, (3)

∂B
∂t

− ∇ × (u × B) = 0, (4)

e − p

(γ − 1)
− ρu2

2
− B2

2
= 0, (5)

in which γ , ρ, u, B, p, and e are the ratio of specific heats,
mass density, the velocity vector, the magnetic field vector,
the gas pressure, and the total energy density, respectively.
In addition, u2 = u · u and B2 = B · B. Here the variables are
nondimensionalized from the physical mass density of air (ρ̃1

as will be given in Sec. II B), reference length scale (L̃0), speed
of sound in the air (Ṽc), and permeability of vacuum (μ̃0).
Specifically, the nondimensionalized variables in Eqs. (1)–(5)
are defined as ρ = ρ̃/ρ̃1, t = t̃/(L̃0/Ṽc), ∇ = L̃0 ∇̃, u = ũ/Ṽc,

B = B̃/

√
μ̃0 Ṽ 2

c ρ̃1, p = p̃/(Ṽ 2
c ρ̃1), and e = ẽ/(Ṽ 2

c ρ̃1). In ad-

dition, the nondimensional length is defined as L = L̃/L̃0. It
is necessary to clarify that throughout this paper, the variables
denoted with the “∼” symbol represent physical units, while
those without the symbol represent nondimensional units.

To numerically solve the aforementioned ideal MHD equa-
tions, we utilize a suite of algorithms. The second-order
predictor-corrector time integrator developed by van Leer is
employed for time advancement [50], while the piecewise lin-
ear method in conjunction with the van Leer limiter is utilized
for nonoscillatory spatial reconstructions. The Harten-Lax-
van Leer discontinuities (HLLD) approximate Riemann solver
is adopted to compute upwind fluxes and electric fields at cell
faces [51]. To maintain the divergence-free constraint of the
magnetic field (i.e., ∇ · B = 0) due to Gauss’s law for mag-
netism, we employ the constrained transport algorithm. These
algorithms have been validated and verified by Stone et al.
[52] and White et al. [53], and have also been successfully
used to investigate the RMI involving light bubbles in both
hydrodynamics and MHD [46]. The simulations presented
in this study are conducted using the open-source software
Athena++ [52,53].

B. Computational setups and validations

The discussions in Sec. III are based on the simulations
using the experimental configuration outlined in Ding et al.
[37], with a specific emphasis on investigating the Richtmyer-
Meshkov instability induced by a single perturbed cylindrical
interface in a shocked medium. The interface shape is mod-
eled after the air-SF6 sinusoidal gaseous interface created by
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FIG. 1. Computational domain. The red line represents the initial
position of the converging incident shock (CIS), the blue arrow line
represents the initial magnetic field (B0), and the blue line is the
initial density interface (DI), which is the pink line superimposed
with sinusoidal perturbations.

a soap film in the experimental study of Ding et al. The mass
density of the air and SF6 gases are ρ̃1 = 1.19 kg/m3 and
ρ̃2 = 5.95 kg/m3 in physical units, respectively. As shown in
Fig. 1, by nondimensionalizing the length with L̃0 = 0.025m,
the simulation domain for the present study is a rectangular
area of [−3, 3] × [0, 3], where the cylindrical interface is
centered at (0, 0). The initial density interface (DI) has a
radius of R = 1 and is perturbed with an amplitude of a =
0.04 using the coordinate r = R + a sin(nθ + π/2), where n
is the azimuthal mode number and θ is the azimuthal angle.
The converging incident shock (CIS) is applied with a Mach
number of Ma = ṼCIS/Ṽc = 1.33 and it is initially a semi-
circle centered at (0,0) with a radius 1.544, in which ṼCIS

and Ṽc are the speed of the converging indecent shock and
the sound speed of air, respectively. The preshock pressure is
set to the atmospheric pressure of p̃0 = 1.017 × 105 Pa. The
permeability of vacuum is μ̃0 = 4π × 10−7N A−2. Because
the fluid for the simulations in Sec. III is considered to be
plasmas, the ratio of specific heats is chosen as γ = 5/3.
Therefore, Ṽc = √

p̃0γ /ρ̃0 = 377.4 m/s. The uniformly dis-
tributed magnetic field is along x direction with a magnitude
of B0. Moreover, the left, right, and upper boundaries are
modeled as outflow boundaries, while a solid wall boundary
condition is applied to the bottom boundary. The remaining
dimensionless parameters used for the initialization can be
obtained from the nondimensionlization process introduced in
Sec. II A as Vc = 1.0, p0 = 0.6, ρ1 = 1.0, and ρ2 = 5.0.

A validation study of the hydrodynamic RMI induced
by the interaction of the converging shock and a semicylin-
drical interface without perturbations (a = 0) is presented,
in addition to our previous studies in both Hydro-RMI and
MHD-RMI induced by planar incident shocks [26,45,46]. In
this validation case, to compare the results with Ding et al.
[37], γ = 1.4 and Ṽc = 345.9 m/s are used for the air at the
room temperature according to Refs. [37,54]. Other parame-
ters including the Mach number, gas densities, initial density
interface radius, and position of the converging initial shock
are the same as the computational setup. Comparisons of
wave patterns and radius of the waves against time obtained
from our numerical simulations using a mesh of 1800 × 900
with the experimental results are shown in Figs. 2 and 3,
respectively. These two figures demonstrate good agreement
between the simulated and experimental results. Compared
to the experimental results, the complex wave configuration

FIG. 2. Validation of our converging shock numerical results (the
second row) by comparing them with the experimental results shown
in Ref. [37] (the first row). IS: Incident shock; DI: Density interface;
TS: Transmitted shock; RS: Reflected shock; STS: Secondary trans-
mitted shock; RRW: Reflected rarefaction waves. The thickest black
line that exists in the first row is the position of the soap film device.

is more clearly captured in our numerical simulations due to
the unavoidable noise present in laboratory experiments. It is
worth noting that the thickest black lines in all figures in the
first row are the position of the soap film device.

To ensure accurate and efficient numerical simulations for
the remainder of this study, a grid convergence analysis was
conducted. Specifically, the interaction between a converging
shock wave and a perturbed semicylindrical density interface
was considered in a rectangular domain of [−3, 3] × [0, 3]
discretized using uniform Cartesian meshes. Three sets of
meshes, denoted as “coarse,” “medium,” and “fine,” corre-
sponding to 900 × 450, 1800 × 900, and 2400 × 1200 grids,
respectively, were tested. The results of this analysis are
shown in Fig. 4. Specifically, the pressure jump predicted by
the medium and fine meshes showed good agreement, while
the results of the coarse grid were somewhat different in
comparison. Based on considerations of both computational
efficiency and accuracy, the medium mesh was selected for
subsequent simulations.

III. RESULTS AND DISCUSSIONS

We investigate the converging incident shock-induced RMI
in both hydrodynamics and MHD. For MHD cases, three

FIG. 3. Comparisons of the radius of the incident shock (IS),
rarefaction shock (RS), and transmitted shock (TS) waves against
time obtained by our present simulation and the experimental result
of Ding et al. [37].
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FIG. 4. Grid convergence study for the interaction between the
converging incident shock and the perturbed semicircular density
interface. The curves depicted in the figure are obtained from y = 0
at t = 0.1. Green dashed line: Coarse grid with 900 and 450 cells
in the x and y directions, respectively. Red solid line: Medium grid
with 1800 and 900 cells in the x and y directions, respectively. Blue
dash-dot line: Fine grid with 2400 and 1200 cells in the x and y
directions, respectively.

different magnetic fields with nondimensional strengths of
β = 1000, 100, and 10 are imposed in the x direction, in
which β is defined as

β = 2 p̃0

B̃2
0/μ̃0

= 2p0

B2
. (6)

A. Anisotropic amplification of the magnetic field

Figure 5 displays the spatial distribution of the ampli-
fied magnetic field. The amplification of the magnetic field
exhibits anisotropy in which a greater enhancement is ob-
served near point A [marked as A in Fig. 5(c)], where uy

FIG. 5. Contours for the amplification of the magnetic field at
different instants in the β = 1000 case. (a) t = 0; (b) t = 0.1; (c) t =
0.2; (d) t = 0.4; (e) t = 0.6; (f) t = 5. The black lines with arrows in
the figure represent the magnetic field lines.

FIG. 6. Schematic of the anisotropic amplification of the mag-
netic fields. CIS: The incident shock wave. B0: The initial magnetic
field. Points A and B represent the typical position where only uy and
ux appear, respectively.

predominates and the angle between B and u is nearly perpen-
dicular initially. Additionally, the magnetic field lines appear
more densely concentrated in this area, yet they are noticeably
more distorted near point B [marked as B in Fig. 5(c)], where
ux is dominant and B and u are nearly parallel.

To provide insight into the underlying mechanism of these
phenomena, the magnetic induction equation is analyzed,
which is presented below as

∂B
∂t

= ∇ × (u × B)

= u(∇ · B) − B(∇ · u) + (B · ∇)u − (u · ∇)B, (7)

in which the first term on the right-hand side (RHS) is zero
due to the divergence-free constraint of the magnetic field
(∇ · B = 0). In Eq. (7), the compression term [B(∇ · u)] de-
scribes the change in the magnetic field due to the divergence
of the fluid velocity field. However, for all cases considered
in this study with Ma = 1.33, this term should be negligible.
The third term [(B · ∇)u] is the stretching/shearing term,
which describes the stretching/shearing of the magnetic field
lines due to the fluid flow in certain directions, leading to an
anisotropic amplification of the magnetic field. The last term,
(u · ∇)B, is called the advection term, indicating the transport
of the magnetic field by the velocity field. Specifically, it
describes how the fluid motion can cause the magnetic field
lines to become distorted and lead to the amplification of
magnetic fields in regions where there is strong advection,
such as in turbulent or shock-driven flows.

Therefore, Eq. (7) can be shorten as

∂B
∂t

= (B · ∇)u − (u · ∇)B. (8)

Initially, the last term in the RHS of Eq. (8) also disappears
since the uniform magnetic field is applied. Thus, the initial
evolution of the magnetic field is mainly influenced by the
stretching of the magnetic field due to the motion of the fluid
and can be explained using

∂B
∂t

= (B · ∇)u. (9)

To demonstrate the anisotropic amplification of the magnetic
field in the converging shock-induced RMI, Fig. 6 is pre-
sented. As seen, the point marked by A [the same A in
Fig. 5(c)] is characterized by the existence of only uy. Then
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FIG. 7. Contours of the (B · ∇)u (shown in the left column) and
(u · ∇)B (shown in the right column) terms for the amplification of
the magnetic field.

∇u becomes ∇uy, and Eq. (9) can be simplified to

∂By

∂t
= (B · ∇)uy. (10)

It can be inferred that the induction of By occurs in point
A due to the presence of the CIS, which results in a denser
distribution of magnetic field lines in this area, as depicted
in Fig. 5. Conversely, in point B, the evolution of B can be
simplified as

∂Bx

∂t
= (B · ∇)ux. (11)

Therefore, the magnetic field becomes distorted in this region,
which could also be identified in Fig. 5. After the initial stage,
the ∇B term in Eq. (8) becomes dominant. Moreover, the
contour plot shown in Fig. 5 suggests that the magnetic field
amplification is more significant in point A, indicating that
the advection term (u · ∇)B is the main contributor to the
magnetic field amplification following the shock impact.

To further elucidate that the dominant mechanism for the
amplification of the magnetic field is the advection term
(u · ∇)B after the initial stage, we compare the two terms
on the RHS of Eq. (8) in Fig. 7 at four different instants
(t = 0.4, 0.6, 0.8, and 5). The (B · ∇)u term mainly appears
on the wave front during the early stages (t = 0.4, 0.6, and
0.8), and becomes more prominent as more vortices form.
Additionally, this term is less dominant in point A where B
is nearly perpendicular to ∇u than in point B where B is
nearly parallel to ∇u. In combination of Fig. 5, it can be
inferred that the amplification of the magnetic field after the
initial stage is not primarily driven by the magnetic stretching
term (u · ∇)B, as point A exhibits greater magnetic field am-
plification. Instead, the advection term (u · ∇)B aligned with

FIG. 8. Evolution of wave patterns and density interfaces in the
hydrodynamic and MHD cases. (a) hydrodynamic case; (b) β =
1000; (c) β = 100; (d) β = 10. DI: Density interface; CIS: Converg-
ing incident shock wave; RS: Reflected shock wave; TS: Transmitted
shock wave.

the nonuniform magnetic field is the dominant factor in the
anisotropic amplification of the magnetic field, as evidenced
by the amplified magnetic field in point A.

The preceding discussion reveals and analyses the
anisotropic nature of the amplification of magnetic fields
induced by converging shocks. Initially, the stretching term
(B · ∇)u causes the uniform magnetic field to become nonuni-
form, leading to a higher density of magnetic field lines in
point A where the initial magnetic field is more perpendicular
to the ∇u and distortion in point B where the initial magnetic
field is more parallel to the ∇u. Subsequently, the nonuniform
distribution of magnetic fields is further amplified, and the
anisotropy is enhanced through the influence of the advection
term (u · ∇)B. Furthermore, upon further investigation, it has
been found that the advection term (u · ∇)B dominates the
amplification of the magnetic field and is particularly strong
in the vicinity of point A, resulting in a greater magnetic field
amplification in this area.

B. Anisotropic acceleration of shock waves

In the presence of a magnetic field, shock waves also expe-
rience anisotropic accelerations, resulting in increased speeds
of the CIS, TS, and RS waves as compared to the hydrody-
namic scenario in specific directions. The schlieren images
depicting |∇ρ| for both the hydrodynamic and MHD cases
are presented and compared in Fig. 8. As expected, following
the collision of the CIS, the density interfaces (DI) become
smoother with an increase in the magnetic field strength. In-
terestingly, the schlieren images also indicate that the wave
speed can be affected by the magnetic field, particularly in
the case of strong magnetic fields (β = 10). Specifically, at
the instant when the CIS hits the DI at t = 0.4, the incident
shock is observed to be accelerated in point A where it moves
almost perpendicular to the magnetic field lines. Following
the interaction between the CIS and DI, the reflected shock
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FIG. 9. Speed of the CIS, RS, and TS waves in the hydrodynamic
and β = 10 cases. The left and right columns show the speed of the
left and upper part for each shock as marked by A and B, respectively,
as shown in Fig. 8. Vh and VB are the corresponding wave speeds of
each wave in the hydrodynamics and β = 10 cases, respectively.

wave (RS) and the transmitted shock wave (TS) are generated
and travel outwards and inwards, respectively. Interestingly,
a comparison of the wave patterns in the hydrodynamic and
β = 10 cases at t = 0.6 reveals that the RS and TS are also
partly accelerated by the magnetic field, as evidenced by
their acceleration near point A where the magnetic field is
stronger.

For a clearer comprehension of the acceleration of shock
waves under the influence of a magnetic field, Fig. 9 illustrates
the wave velocities of the CIS, TS, and RS marked as Vh and
VB for the hydrodynamic and β = 10 scenarios, respectively.
The left and right columns of this figure illustrate the wave
speeds in point A (marked as A as shown in Fig. 8) and point
B (marked as B as shown in Fig. 8), respectively. Notably,
the magnetic field has no effect on the speeds of each wave
in point B, but speeds of the CIS, RS, and TS near point A
are accelerated by the strong magnetic field. Additionally, the
CIS is not accelerated during the initial stage (t ∈ [0, 0.1]),
but it gains acceleration as it approaches the DI. At t = 0.38,
the CIS hits the density interface and generates a pair of RS
and TS. Specifically, the speed of the CIS in hydrodynamics
is 1.33, which is consistent with our initial set of Ma = 1.33.
However, in point A, the magnetic field accelerates it by
approximately 7.5% with VB = 1.43 for the β = 10 case.
Similarly, the RS and TS in point A also experience an ac-
celeration of approximately 7.5%.

In the subsequent section, the pressure distributions are
analyzed to clarify the mechanism responsible for the accel-
eration of the shock waves. Pressure contours and magnetic
field line distributions during the initial stage (t = 0), imme-
diately before the CIS collides with the DI (t = 0.2), and

FIG. 10. The wave structures, interface structures, the distribu-
tions of pressures terms, and the magnetic field lines at the initial
stage (t = 0), immediately before the CIS impacts the DI (t = 0.2),
and immediately after the CIS impacts the DI (t = 0.55).

immediately after the CIS collides with the DI (t = 0.55),
respectively, are illustrated in Fig. 10. The distribution of
various pressure terms along line from y = 0 to y = 3.0 with
x = 0 are plot in Fig. 11. The definition of the plasma pressure
(Ppla) and the magnetic pressure (Pmag) in the MHD cases are

FIG. 11. Comparison of various pressures (Ph, Ppla, Pmag, and Ptot)
distributions at t = 0.2 and t = 0.55 from y = 0 to y = 3 with x = 0
for the β = 10 case.
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FIG. 12. Contours of the density in all cases at t = 2.06 (the left
column) and t = 5 (the right column).

given as

Ppla = p,

Pmag = B2

2
,

Ptot = Ppla + Pmag. (12)

When comparing results of t = 0 and t = 0.2 before the
CIS hits the DIs, it is observed that although the initial
distribution of plasma pressure Ppla is uniform, it becomes
nonuniform and increases near the CIS in point A due to the
distortion of magnetic lines in this region, which is unlike the
planar shock-induced cases. Additionally, it is interesting to
note that the Ppla carried by the fluids decreases in the region
where magnetic pressure increases, leading to an increase in
the magnetic field strength in this region. However, the total
pressure increases near this region when compared to the
corresponding hydrodynamic cases. As a result, the pressure
jump before and after the shock increases, which accelerates
the speed of the CIS in this region. As shown in Fig. 11(a),
the magnitude of Ph are 0.6 and 1.24 before and after the
CIS, respectively, while the magnitude of Ptot are 0.7 and 1.38
before and after the CIS, respectively. Similarly, the Ppla also
increases near the TS and RS in point A, and the pressure
jump before and after these shocks also increases as shown
in Fig. 11(b). These contours reveal that the CIS, RS, and TS
shocks are partly enhanced near the position where the wave
front aligns more with the magnetic field lines, i.e., where the
flow is more perpendicular to the magnetic field.

C. Anisotropic evolution of the RMI

In this section, we aim to examine the anisotropic pro-
gression of the MHD-RMI, with a particular emphasis on the

FIG. 13. Trajectories of (a) the point A (marked as A shown in
Fig. 8) and (b) the point B (marked as B shown in Fig. 8) of the
density interfaces in the hydrodynamics and β = 10 cases.

anisotropy development of the DI and the associated vorticity
distributions. The comparison of the evolution of DIs in hy-
drodynamics and three MHD cases (β = 1000, 100, and 10)
at two different time instances is presented in Fig. 12. Interest-
ingly, even at t = 2.06, differences in the interface shape exist
between the hydrodynamic and β = 10 cases. When the time
reaches t = 5, significant differences in the interface struc-
tures can be seen for varying magnetic strengths. Additionally,
in the hydrodynamic cases, the interface structure induced by
the RMI, i.e., the spikes and bubbles, exhibit the same behav-
ior near points A and B. However, even with a uniform initial
magnetic field, the introduction of magnetic fields results in
the formation of anisotropic spikes and bubbles.

Furthermore, the velocities of the DI at points A and B
(corresponding to marked points A and B as shown in Fig. 8,
respectively), where the initial magnetic field is almost par-
allel and perpendicular to the wave front, respectively, are
compared and plotted in the left and right columns of Fig. 13.
From the figure, the velocity of the DI in point A is decreased
while the velocity of the DI in point B is increased. These
findings collectively demonstrate the anisotropic nature of the
MHD-RMI induced by converging shocks.

The subsequent discussion will examine the vorticity dis-
tributions during the early stage when the CIS impacts the DI
and the later stage when dominant waves (e.g., CIS, TS, and
RS et al.) have traversed beyond the computational domain.
Figure 14 presents a comparison of the vorticity distributions
in the hydrodynamic (left column) and β = 10 cases (right
column) with zoomed-in details of the P1 and P2 regions in
the third and fourth rows, respectively. At the instance of t =
0.4, the CIS impacts the DIs in the P1 region and generates the
TS and RS, while the CIS has not yet reached the DIs in the P2
region. The vorticity distributions in the hydrodynamic case
show that vorticities are generated upon impact and deposited
on the DI, whereas in the β = 10 cases, the initial vorticities
deposit on the DI but subsequently split into vorticity sheets
that travel along two sides of the DIs. Furthermore, a compar-
ison of Figs. 14(a3) and 14(b3) reveals that the distortion of
the magnetic field lines leads to differences in the vorticity
distributions between the hydrodynamic and β = 10 cases.
Moreover, the comparison of Figs. 14(a4) and 14(b4) also
shows that, in the hydrodynamic case, vorticities along the two
sides of the CIS are of equal magnitude but opposite direction,
while in the β = 10 case, vorticities along the two sides of the
CIS are in the same direction but have different magnitudes.
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FIG. 14. Vorticity contours for the hydrodynamic (the left col-
umn) and β = 10 (the right column) cases at t = 0.4 with the
zoomed-in details shown in the last two rows. The black solid lines
in (b3) and (b4) represent the magnetic field lines. The first row is
the density schlierens showing the wave and interface position.

These findings suggest that the vorticity distributions in the
converging MHD-RMI are also anisotropic.

The above discussion has revealed that prior to the onset
of the MHD-RMI, the vorticity distribution exhibits a degree
of anisotropy. To further elucidate the mechanism responsible
for the anisotropic distribution of vorticity fields observed in
the MHD cases, as represented by Eq. (13), the Lorentz force
is decomposed into its constituent magnetic pressure force
[∇(B2/2)] and magnetic tension force [(B · ∇)B]:

fL = (∇ × B) × B = (B · ∇)B − ∇(B2/2). (13)

The vector fields of the magnetic tension force and the mag-
netic pressure force are depicted in the second and third rows
of Fig. 15, respectively. The magnitudes of these forces are
higher near the wave front than near the DI. Furthermore, the
magnetic pressure force is oriented in the same direction as
∇p, thereby resulting in the same direction of the vorticity
according to Eq. (14). Consequently, the opposite sign of the
vorticity distribution along the two sides of the shock fronts
arises mainly because of the magnetic tension force, which
imparts torque to the fluids.

The vorticity equation in the MHD cases is given as

Dω

Dt
= (ω · ∇)u − ω(∇ · u) + ∇ρ × ∇p

ρ2

+∇ × (B · ∇B)

ρ
+ ∇ρ × ∇(B2/2)

ρ2
, (14)

where, on the right-hand side, the first term becomes negli-
gible in two-dimensional simulations, as the vorticity vector
ω is always perpendicular to the velocity gradient vector ∇u.
The second term, which mainly appears around the wave front

FIG. 15. Vorticity fields in the box region P1 and P2 (shown
in Fig. 14) at t = 5 for the (a) hydrodynamic and (b, c) β = 10
cases. The black and red arrows represent the magnetic pressure
force [∇(B2/2)] and the magnetic tension force term [(B · ∇)B],
respectively.

in the early stage, is relatively small at Ma = 1.33. The third
term, known as the baroclinic term, is the primary cause of the
RMI in hydrodynamics [26]. The fourth term is attributed to
the magnetic tension forces, as shown in Eq. (13). Finally, the
fifth term ∇ρ×∇(B2/2)

ρ2 is similar to the hydrodynamic baroclinic

term ∇ρ×∇p
ρ2 .

Figure 16 depicts the vorticity distributions during the later
stage of the simulation when dominant waves (e.g., CIS, TS,
and RS et al.) have almost traveled outside the computa-
tional domain and the RMI-induced bubbles and spikes have
become evident. From Fig. 16(f), the vorticity distribution
is anisotropic and variations can be identified between the
hydrodynamic and β = 1000 cases. The vector fields of the
∇Ptot are presented in Figs. 16(d) and 16(f), denoted by black
arrows. Notably, the ∇Ptot is almost aligned with the corre-
sponding ∇p displayed in the hydrodynamic cases, albeit with
different magnitudes.

Then, Fig. 17 provides a detailed comparison of all terms
involved in inducing the development of vorticity. In both the
hydrodynamic and MHD cases, the ∇p term exhibits almost
the same direction and amplitude. However, the ∇(B2/2) term
tends to be in the opposite direction to ∇p, thereby reducing
the effect of the baroclinic effects. However, the magnetic
tension term dominates over the other two forces, and it is
asymmetric along the two sides of the vortices. In the context
of MHD cases, the magnetic tension force functions as a
torque that hinders the rotation of fluids surrounding the RMI
bubbles and spikes. Consequently, the final DI and vortices
exhibit anisotropy.
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FIG. 16. Vorticity contours for the hydrodynamic (the left col-
umn) and β = 1000 (the right column) cases at t = 5 with the
zoomed-in details shown in the last two rows. In panels (c) and (d) the
black arrows represent the ∇p; in panels (d) and (f) the black and red
arrows are ∇ptotal and (B · ∇)B, respectively.

IV. CONCLUSIONS

In summary, this study investigates the effect of magnetic
fields on the converging shock-induced Richtmyer-Meshkov
instability (RMI) using numerical simulations. The investi-
gation involves the interaction between a converging shock
wave and a semicylindrical density interface (DI) under
both hydrodynamic and magnetohydrodynamic (MHD) con-
ditions, considering three different magnetic field strengths.
Initially, the magnetic field is uniformly distributed. The find-
ings presented in this study offer significant insights into the
anisotropic amplification of magnetic fields, as well as the
anisotropic acceleration of shock waves, and related charac-
teristics of the DI and vorticity distributions. To the best of
our knowledge, these observations have not been discussed
previously.

To demonstrate the amplification of magnetic fields in
response to the application of a converging incident shock
(CIS), the magnetic induction equation is analyzed. It is
shown that the magnification of the magnetic field is brought
about by the stretching of the magnetic field due to the fluid
motion [(B · ∇)u]. The fluid motion produces varying magni-
tudes of magnetic field amplification along the DI, depending
on the direction of the DI being examined. For example, solely
Bx undergoes magnification by ∂Bx/∂t = (B · ∇)ux, limited
to the endpoints of the semicylindrical DI, with By being

FIG. 17. Vector fields for each component of the vorticity equa-
tion (represented by black arrows) along with the contours of the
vorticity field. First row: The gradient of the hydrodynamic pressure
in the hydrodynamic cases; second row: The gradient of the plasma
pressure the β = 1000 case; third row: The gradient of the MHD
pressure the β = 1000 case; fourth row: Magnetic tension forces in
the β = 1000 case.

amplified by ∂By/∂t = (B · ∇)uy, localized to only the middle
point of the DI, thus giving rise to the anisotropic magnifica-
tion of the magnetic field. Additionally, the (u · ∇)B term in
the magnetic induction equation becomes apparent after the
amplification of B due to the (B · ∇)u term. Eventually, the
(u · ∇)B term dominates the anisotropic magnification of the
magnetic field near the middle point of the semicylindrical
DI.

Moreover, this investigation has also revealed that the CIS,
the transmitted shock wave (TS), and the reflected shock
wave (RS) experience partial acceleration near the middle
point of the semicylindrical DI where the initial magnetic
field is more perpendicular to the fluids and greater magnetic
field amplification is observed. To elucidate the underlying
mechanism, we compare the magnetic pressure, plasma pres-
sure, and total pressure with the corresponding hydrodynamic
pressure values immediately before, at the instant of, and
immediately after the CIS impacts on the DI. The findings
indicate that near the middle point of the semicylindrical DI,
the total pressure (the sum of magnetic and plasma pres-
sure) is higher than the hydrodynamic pressure, demonstrating
the role of magnetic pressure in the acceleration of shock
waves.

The exploration of the development of the semicylindrical
DI has unveiled its anisotropic behavior in MHD conditions,
in contrast to what is typically found in hydrodynamic con-
ditions. Specifically, the bubble and spike structures for the
RMI in hydrodynamics become asymmetric in the MHD
conditions, with a stronger magnetic field resulting in a
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smoother interface and eventually no observable bubble and
spike structures at β = 10. Furthermore, the middle point
of the semicylindrical DI experiences acceleration, while the
endpoints of the semicylindrical DI undergo deceleration. At
a later stage, when dominant shock waves including CIS, TS,
and RS have propagated beyond the computational domain,
the vorticity distributions in the MHD cases show a certain
degree of anisotropy due to the influence of magnetic tension
forces.

Future work could address the quantification of these
anisotropies discussed in this study. Statistical measures
such as variance, standard deviation, or coefficient of
variation could be used to quantify the variability or dis-
persion of data along different directions. These measures

could provide insights into the anisotropy of the data
distribution.
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