
Composite Structures 324 (2023) 117550

Available online 7 September 2023
0263-8223/© 2023 Elsevier Ltd. All rights reserved.

Butterfly lattice materials for controllable multi-stage energy absorption 

Wu Yuan a,b, Wenfeng Liu c, Hongwei Song a,b,*, Chenguang Huang b 

a Key Laboratory for Mechanics in Fluid Solid Coupling Systems, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China 
b School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China 
c Institute of Physics, University of Amsterdam, Amsterdam, the Netherlands   

A R T I C L E  I N F O   

Keywords: 
Lattice material 
Multi-stage crushing 
Gradual energy absorption 
Bending-dominated 

A B S T R A C T   

Energy absorption properties of cellular materials have gained increasing interest due to their superior perfor
mance and immense design space. This paper introduces a novel lattice material with a Butterfly configuration 
that has controllable multi-stage crushing behavior and high specific energy absorption capacity. A theoretical 
model is developed to predict the plateau stress, elastic modulus and critical strain of each stage, in order to 
obtain the multi-stage stress-strain curve. Compression experiments and the finite element modelling are also 
carried out to validate the theoretical model. Theoretical and experimental results show that the Butterfly lattice 
material has more than two crushing stages and a specific energy absorption property comparable to the 
traditional stretching-dominated lattice material. Finally, effects of topology configuration, cell number, and 
geometrical parameter on the energy absorption behavior are analyzed. It is found that the length of the vertical 
beam dramatically influences the plateau load and deformation behavior of each stage.   

1. Introduction 

Crashworthiness has always been a severe concern for cellular ma
terials and structures, which have many applications in aerospace, 
automobile, and packaging [1–7]. Light-weight lattice materials with 
high specific stiffness and specific strength properties are seen as one 
important cellular materials due to their high energy absorption ca
pacity [8–11]. The stretching-dominated deformation behavior and 
their stiffness and strength scale linearly with their relative density ρ. 
Thus, for a relative density of ρ = 0.1 the stretching-dominated 
structure is about 10 times stiffer and 3 times stronger than bending- 
dominated structure[12,13]. A variety of lattice configurations have 
been proposed and produced such as tetrahedral[14], pyramidal[15], 
3D Kagome[16], octet truss[13,17] and BCC/hourglass[18] lattice. The 
bending and stretching dominated lattices as well as their post-elastic 
performance has been deeply researched [19–21] and some theoret
ical model are also developed [22–24]. All of them exhibit much higher 
initial specific stiffness and strength than foams with the same relative 
density. 

However, the initial yield of above stretch-dominated lattice of low 
relative density is usually followed by plastic buckling or brittle collapse 
of the beams, leading to dramatical post-yield softening [25,26]. This 

deformation behavior may cause a catastrophic failure of the structure, 
and result in a low specific energy absorption (SEA), which is defined as 
the energy absorption per volume or per unit mass. One of the helpful 
methods is to replace solid lattice with hollow members to solve this 
limitation [27,28]. The self-contact of the hollow lattice can suppress 
the post-yield softening phenomenon. The other method is increasing 
the lattice members in the loading direction, which is worked by con
tacting lattice members of the contiguous layers [29,30]. 

Another widely used strategy in the energy absorption system is the 
constant energy absorption (CEA) strategy for crashworthy designers. 
Bending-dominated foam and honeycomb materials are once seen as the 
ideal energy absorption materials due to their long, stable yield plateau 
stress during the bending process [31–33]. Low initial stiffness and 
strength of such materials can reduce the overload or accleration in an 
impact event, therefore reduce damages to the inner equipment or oc
cupants. However, randomly distributed pore structures inside the foam 
material cause an uncontrollable mechanical property in the design step. 
Meanwhile, since the Young’s modulus and initial yield strength of 
foams scale with relative density ρ in the form ρ2 and ρ3

2 respectively 
[15], the stiffness and strength of foams decrease rapidly with the 
decrease of the relative density, leading to pretty low energy absorption 
efficiency. The volume SEA and mass SEA of a pure bending-dominated 
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material scale with ρ3
2 and ρ1

2, respectively. 
For crashworthiness, both the total quantity of the absorbed energy 

and the capacity to reduce the damage of the protected things have to be 
considered [34]. The CEA energy absorption structure cannot adept to 
various impact events and provide efficient protection. This limitation of 
manipulation appears in generating almost the same force correspond
ing to different the initial velocities, hence the only difference between 
different cases is larger stroke of deformation for larger applied kinetic 
energy amount [35]. An ideal energy absorption strategy aims at 
manipulating accidents feedbacks (reactions/damages) depending on 
accidents initial impact velocities. However, the stretching-dominated 

material’s high initial strength damages the target because of its 
higher initial strength. The lower initial strength of the CEA strategy will 
reduce the total absorbed kinetic energy[36]. To solve this problem, Xu 
[37] et al. proposed a gradual energy absorption (GEA) strategy. The 
absorption system has different gradually increasing stiffness during the 
deformation process in the GEA strategy. This strategy was extended to 
various structures and applications by Esa [35] and Zahran [34], called 
the piecemeal energy absorption (PEA) strategy. The piecemeal strength 
of different levels was carried out by the nested round or square thin- 
walled tubes with different lengths and imperfections [38–42]. Figs. 1 
and 2 show the three typical loading paths, materials and structures with 
different absorption strategies. 

This work designs a novel three-dimensional lattice material capable 
of multi-stage deformation under compressive loading. Butterfly lattice 
material undergoes a controlled topology transformation when the 
compressive deformation changes. The transformation enables switch
ing between a bending-dominated and a stretch-dominated topology. 
The critical transform load and deformation of each stage are obtained 
by a theoretical model. The failure mode and deformation process are in 
accordance with the experimental and numerical results. The compres
sive stress–strain curve from the theoretical and experimental results 
shows that Butterfly lattice material has more than two stable stress 
plateaus and has higher specific stiffness and specific strength than the 
foam material. Finally, effects of topology configuration, cell numbers, 
and vital geometrical parameters are investigated on the energy ab
sorption property of the Butterfly lattice material. 

2. Topological design and fabrication 

Butterfly lattice material combined the advantages of lower initial 
strength of the bending-dominated material and high SEA of stretching- 

Fig. 1. The comparison of crushing behavior among the bending-dominated 
structures, stretch-dominated lattice structures, and multi-stage structures. 

Fig. 2. Three kinds of energy absorption materials or structures (a) bending-dominated materials [43], (b) stretching-dominated lattice materials [43], (c) PEA 
structure[35]. 

Fig. 3. Design principle of the Butterfly lattice materials.  
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dominated materials. As shown in Fig. 3, The unit cell of Butterfly lattice 
is composed of 4 long oblique beams and 4 short vertical beams. The 
presence of the vertical beams leads the deformation mode of the long- 
oblique beam to bending from buckling. Therefore, the high initial 
critical strength and the post-yield softening phenomenon are elimi
nated. After the bending deformation, the compression load is applied to 
the vertical short beam. Then the failure modes of the short vertical 
beam are transformed to buckling, which is stretching-dominated. Fig. 4 
shows the schematic diagram of the Butterfly truss. Due to each beam’s 

difference in length and boundary condition, Butterfly lattice material 
can have multiple failure modes and critical loads. 

A snap-fit and vacuum brazing method was used to fabricate the 
Butterfly cores. The fabrication process mainly includes three steps. 
Firstly, truss patterns were made from the 304 stainless steel sheets of 
single thickness with the laser cutting, as shown in Fig. 5(a) and (c). the 
thickness of the sheet is 1.45 mm; Secondly, these patterns were then 
snap-fitted into each other to produce a butterfly truss core; Finally, the 
cores were bonded each other using the vacuum brazing approach. Two 

Fig. 4. The schematic diagram of the (a) butterfly truss, (b) unit cell of butterfly lattice.  

Fig. 5. The fabrication process of Butterfly lattice. The cutting and assembling process of LA Butterfly configuration are shown in (a) and (b), respectively. The 
cutting and assembling process of TA Butterfly configuration are shown in (c) and (d), respectively. 
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kinds of arrangements are considered: (1) loose arrangement (LA), the 
lattice unit cell fitted in alternatively node of the core (Fig. 5(b)). (2) 
tight arrangement (TA), the lattice unit cell fitted in each node of the 
core (Fig. 5(d)). 

Ni-7Gr-4.5Si-3.1B-3Fe amorphous solder alloy (Nicrobraz 31) was 
first applied evenly to the nodal regions of the assembled structure. The 
assembly was placed in a vacuum furnace for high-temperature brazing 
and heated at 15 ◦C/min up to 950 ◦C, held for 30–60 min (to provide a 
uniform temperature field in the specimens), then heated at 20 ◦C/min 
to 1050 ◦C, for 6 ~ 10 min at 2 × 102 Pa before the furnace naturally 
cooled to ambient temperature. The two arrangements of of Butterfly 
truss cores’ relative density were about 1.63% and 2.69%, respectively. 

3. Theoretical analysis 

3.1. Relative density 

Geometric parameters of the butterfly lattice member is sketched in 
Fig. 4, including the oblique beam length l1, longitude beam length l2, 
oblique, and longitude beams width t, thickness w. The relative density 
ρ1, defined as the volume fraction of the volume of the solid material to 
the total volume in the unit cell, is given by: 

ρ1 =
8ltw + 4l2tw + 2t2h1

m + 4bht
(
2lsinω + h0

m + 2htab
)
(2lcosω + b + t)2 (1) 

Note that in this paper, the inclination angle of oblique beam with 
horizontal pale ω is 45◦ and the cross-sections of all beams are square 
section, t = w. Then, the relative density of the butterfly core can be 
simplified as: 

ρ1 =
4(2l + l2)t2 + 2t2h1

m + 4bht
( ̅̅̅

2
√

l + h0
m + 2htab

)( ̅̅̅
2

√
l + b + t

)2 (2) 

when the node volumes is not considered, the relative density of the 
ideal butterfly core reduces to: 

ρ1 =

(

2
̅̅̅
2

√
+

̅̅̅
2

√ l2

l

)(t
l

)2
(4) 

The relative density of TA B utterfly cores is: 

ρ2 = Nρ1 (5)  

N = 1+
(n1 − 1)(n2 − 1)

n1n2
(6) 

Where n1 and n2 are the numbers of the LA Butterfly core in the X and 
Y directions, respectively. When n1, n2 >> 1,ρ2 ≈ 2ρ1. 

3.2. Analysis of multi-stage deformation 

The schematic of the multi-stage failure mode is shown in Fig. 7. 
Butterfly lattice transforms into the substructure from the initial 
configuration under the compressive load. Two boundary conditions are 
considered in the theoretical model: free boundary and sliding bound
ary. A plastic hinge is formed at the intersection of the oblique and the 
vertical beams for the free boundary condition. For the sliding boundary 
condition, plastic hinges are formed at the middle of each beam and the 
intersection of the beams, respectively. The deformation process of this 
kind of structures have two substructures. As shown in Fig. 7(b), for the 
first substructure, the main deformation mechanism is the bending of 

Fig. 6. Photographs of two arrangements of Butterfly lattice structures with relative density, 1.63% and 2.69%. Isometric views of the compressive samples of LA and 
TA Butterfly configurations are shown in (a) and (b), respectively. The compression loading directions of LA and TA Butterfly configurations are shown in (c) and (d), 
respectively. The bonded nodes by brazing of LA and TA Butterfly configurations are shown in (e) and (f), respectively. 

W. Yuan et al.                                                                                                                                                                                                                                   



Composite Structures 324 (2023) 117550

5

the oblique beam. In the second substructure, the main deformation 
mechanism is the bending of the vertical beam under the compression 
and bending. Before the first substructure is generated, the post-yield 
force remains unchanged. After the generation of the second substruc
ture, the compressive stress is increased until a new plastic hinge is 
formed. Finally, the compressive stress is increased to the third plateau 
when the two beams are contacted. External compressive load along the 
Z direction (shown in the coordinate system of Fig. 5) is applied on the 
Butterfly lattice material. For the lattice material, the compressive load 
is applied on the point C as F1 at the first substructure and on the point B 
as F2. 

3.3. Theoretical analysis of the first stage 

According to the deformation of the Butterfly lattice material under 
the compressive load, the equivalent stiffness can be deduced as 
(detailed derivation process is in A**ppendix A): 

E1
1st =

4F1

AcellεZ
=

Est2H

Acell

[
l3
1 +

6l21 l2(l− l1)
4l2+3(l− l1)

] (7) 

Where Acell = (2lcosω + b + t)2 is the cross-sectional area of the lat
tice cell, F1 is compressive load applied on the point B, Es is the elastic 
modulus of the parent material, I is the moment of inertia of the beam, l1 

is the length of the BC section, H is the total height of the cell. 
For the sliding boundary condition, as shown in Fig. 6 (d), the ver

tical deformation of the beam is 

δ1
Z =

FT l3
1

3EsI
cosω −

MCl2
1

2EsIcosω+ θBl1cosω (8)  

MC =
1
2

Fl1cosω (9)  

E2
1st = 2E2

1st (10) 

For Butterfly lattice material, both the free and sliding boundaries 
exist, and the total stiffness is the linear superposition of the two 
boundary conditions. For LA, the equivalent stiffness can be expressed as 

E1st = N1E1
1st +N2E2

1st = (N1 + 2N2)E1
1st (11) 

Where N1 and N2 used in are functions of n1 and n2, and N1 = n1+n2
2n1n2

, 
N2 = 1 − N1. For lattice material fabricated in this work, N1 = 1

3, N2 = 2
3. 

For TA, the equivalent stiffness is 

E1st = N3E1
1st +N4E2

1st = (N3 + 2N4)E1
1st (12) 

Where N3 = N1 = n1+n2
2n1n2

. Due to the different arrangement of the LA 
and TA configuration, the parameter of N4 is not the same as N3, and 
N4 = 2(1 − N3). For lattice material fabricated in this work, N3 = 1

3, 
N4 = 4

3. 
The compressive strength of the first stage for the free boundary 

condition is 

σa
1st =

4Fplateau
1

Acell
=

t3σs

(1 − μ)Acelll1cosω (13) 

For the sliding boundary condition, the bending moment of the point 
B is 

MB =
(1 − 2μ)

2
F1l1cosω (14) 

The compressive strength of point B corresponding to the critical 
bending moment is 

σb
1st =

2t3σs

(1 − 2μ)Acelll1cosω (15) 

For LA Butterfly lattice material, the compressive strength is the 
linear superposition of the two boundary conditions, which can be 
expressed as 

Fig. 7. Schematic of the multi-stage failure mode. (a) progressive stress–strain 
curve of the unit cell of Butterfly lattice under compression, (b) deforma
tion mechanism. 

Fig. 8. The force analysis of the first stage of butterfly lattice under compres
sion. (a) one-quarter model of the butterfly unit cell, (b) free of the beam end, 
(c) guide of the beam end, and (d) the bending distribution of the end nodes of 
the vertical beam. 
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σplateau
1st = N1σa

1st +N2σb
1st (16) 

When n1 = n2 = 3, 

σplateau
1st =

1
3
σa

1st +
2
3

σb
1st (17) 

The compressive strength of the TA Butterfly lattice material is 

σplateau
1st = N3σa

1st +N4σb
1st (18) 

When n1 = n2 = 3, 

σplateau
1st =

1
3
σa

1st +
4
3

σb
1st (19) 

The critical strain of the first stage is 

ε1st =
H − l2 − 3t

H
(20)  

3.4. Theoretical analysis on the second stage 

According to the deformation of the Butterfly lattice material under 
the compressive load, as shwon in Fig. 9, the equivalent stiffness of the 

Fig. 9. The force analysis of the second stage of butterfly lattice under compression. (a) one-quarter model of the butterfly daughter configuration, (b) bending 
distribution at the plastic hinge, (c) the force analysis of vertical bar. 

Fig. 10. The geometrical relationship of the truss with densified strain.  

Fig. 11. Compressive deformation results of the butterfly unit cell, (a) Exper
imental and FEM results and legend of FEM results are equivalent plastic strain. 
(b) The comparison of the compressive stress–strain curves. 
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second stage is 

E2ed =
1
Ω

4t2

Acell
(21)  

Ω =
1
Et

+
(l − l1)(l2 + 3t)

[(l2 + 3t) + 2(l − l1) ]Es 

The equivalent compressive strength of the second stage for the LA 
Butterfly lattice material is 

σplateau
2nd =

4Fplateau
2

Acell
=

4
(

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
L2(1 − k) + k2

√
− k

)

L2Acell
t2σs (22) 

Where k is the proportionality coefficient for the bending moment of 
the beam BC. The equivalent compressive strength of the second stage 
for the TA Butterfly lattice material is  

σplateau
2nd = N

4Fplateau
2

Acell
= N

4
(

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
L2(1 − k) + k2

√
− k

)

L2Acell
t2σs (23)  

N = 2
(

1 −
1

n1 + n2

)

Fig. 10 shows the geometrical relationship for the densification of the 

Butterfly lattice material. Suppose the equivalent stress of the lattice is 
drastically increased when the beams BE and AB are parallel, then 

(l − l1)sinθ =
l2

2
sinθ+ t (24) 

The strain at the beginning of the densification stage is 

εD =
H − 2(l2sinθ/2 + t)

H
= 1 −

2t
H
−

tl2

H(l − l1 − l2/2)
(25)  

4. Results and discussions 

The compressive behavior of Butterfly lattice material was tested 
experimentally and numerically to verify the precision of the theoretical 
model. The loading rate is 2 mm/min. A finite element modeling (FEM) 
is also developed using the commercially available FEM software ABA
QUS. The geometrical and material nonlinearities are both considered. 
The yield strength of the parent material is 225 MPa, the elastic modulus 
is 210 GPa. The linear strain-hardening is used and the hardening 
modulus is 3 GPa. Hexahedral scanning element (C3D48R) is used in the 
model. The surface-to-surface contact condition are used as the contact 
condition between the loading plate and the beams. The self-contact 
condition is used as the contact condition among the beams. The num
ber of the mesh along the beam thickness is 5, the mesh number of the 

Fig. 12. Compressive deformation results of the butterfly lattice materials with 3 × 3 unit cells. (a) Experimental and FEM results. (b) The compressive stress–strain 
curves. (c) Beams deformation after quasi-static compression. Regions with white circles are free boundary conditions, and regions with red circles are sliding 
boundary conditions. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article. 
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oblique beam is about 150 and the total number of the mesh is 22250. 
The implicit analysis is performed in the model. Then effects of cell 
numbers, topology configuration, and the main geometrical parameter 
are investigated on the energy absorption behavior. 

4.1. Cell numbers 

Fig. 11(a)-(b) show the compressive behavior of the Butterfly lattice 
material obtained from the experiment and the numerical model. It can 
be found that the typical substructure, the critical deformation, and the 
plateau load of each stage obtained from the theoretical model are 
basically in accordance with that from the experiment and the numerical 

model. The compressive load arrives at the peak value when the first 
plastic hinge is formed at the intersection of the oblique and the vertical 
beams. With the increase of the compressive deformation, the equivalent 
stress increases to the second peak value when the plastic hinge forms at 
the middle of the vertical beam. Post-yield softening phenomenon does 
not occur due to the bending deformation. The two beams are not 
contacted due to the fabrication error. Therefore, the stress has a slight 
decline before the densification. 

Fig. 12(a) shows the compressive process of the LA Butterfly lattice 
material with 3 × 3 cells. All the results from the numerical model agree 
with those from the experiment. Fig. 12(b) shows the compressive 
stress–strain curves of LA butterfly lattice. The plateau stress of the 

Fig. 13. The experimental and FEM results of the configuration transformation of TA butterfly lattice. (a) Experimental and FEM results. (b) The compressive 
stress–strain curves. (c) Beams deformation after quasi-static compression. 

Fig. 14. The butterfly unit cells with three different vertical bars lengths.  
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second stage obtained from the theoretical model is bigger than that 
from the experimental and the numerical due to the bending deforma
tion of the beams in the second substructure. Compared with the 
compressive behavior of one unit cell, boundary conditions for some of 
the lattice cells are sliding. The failure mode and critical load are 
different. All boundary conditions of the central unit cell are sliding. 
Fig. 12(c) shows the final failure mode in the top view. The surrounding 
cells have an obvious deformation when the second substructure is 
formed. 

4.2. Topology configuration 

TA Butterfly lattice materials are designed to improve the stability of 
the beams. Fig. 13(a) shows the transforming mode of TA Butterfly 
lattice under the compressive load. Fig. 13(b) shows the stress–strain 
curve. All the critical stress and strain of the first stage agree with those 
from the experiment and the numerical model. In addition, the plateau 
stress can also be predicted theoretically for the second stage. However, 
there is no apparent stress plateau in the numerical model and the 
experiment results in the second stage. In the theoretical model, the 
stress seems to be constant from the existence of the plastic hinge to the 
densification stage. Therefore, there is a big difference in the stress be
tween the numerical model and the experiment. Fig. 13(c) shows the 
failure mode when the compression process is finished. The out-of-plane 
deformation for the vertical beam of the outside cells is controlled. 
However, some solder joints are fractured due to the stress 
concentration. 

4.3. Geometrical model 

The transform of the geometrical configuration, critical transforming 
stress, and strain is mainly determined by the position of the plastic 
hinge, which can be carried out by modifying the length of the vertical 
beam. The length of vertical beams is 10.6 mm, 13.6 mm, and 16.6 mm, 
as shown in Fig. 14. 

Fig. 15 shows compression results for the butterfly lattice material 
from the experiment. It is found that the length of the beam has a 

significant effect on the size of stress and strain plateau. The plateau 
stress of the first stage decreases with the vertical beam’s length 
increasing, and the second stage’s plateau stress increases. When the 
length of the vertical beam is increased to a particular value, the plateau 
stress of the first stage equals that of the second stage, and the two stages 
are merged to a long one. Fig. 16 shows the SEA of the Butterfly lattice 
materials with different geometrical parameters. It is found that the 
slope of the SEA is constant at the beginning of the compression process 
when the vertical beams are 10.6 mm and 13.6 mm, respectively. The 
slope of the first stage is lower than that of the second stage. For the 
configuration of 16.6 mm, the SEA is increasing linearly. The energy 
absorption rate is directly related to the value of the stress plateau. The 
energy absorption rate is higher when the stress plateau’s value in
creases. Every deformation stage corresponds to one energy absorption 
rate. When the compression strain is lower than 0.48, the energy ab
sorption capacity of Butterfly lattice material with the vertical beam of 
16.6 mm is the maximum among the three configurations. However, the 
energy absorption capacity of Butterfly lattice material with the vertical 
beam of 13.6 mm is the maximum when the compression strain is more 
prominent than 0.48. The comparison of the SEA for Butterfly lattice 
with those traditional stretching dominated lattice material and bending 
dominated foam material are shown in Fig. 17. It can be found that even 
the Butterfly lattice material has a low initial compressive load, the SEA 
is comparable to the stretching dominated lattice material. 

5. Conclusions 

A novel multi-stage controllable Butterfly lattice material is pre
sented in this study. The plateau load and plateau deformation of each 
stage are obtained by the theoretical model and the experiment. Results 
show that the TA Butterfly lattice material has a more stable deforma
tion process than that of LA type. More than two controllable, gradually 
increasing stress–strain curves can be obtained by applying vertical 
beams on the lattice material. Every stage’s plateau loads and defor
mation can be determined by designing the vertical beam length. The 
Butterfly lattice material is more applicable to the energy absorption 
system due to its multi-stage controllable deformation, non-post-yield 
softening, and compressive load increase than the bending-dominated 
foam and the stretching-dominated lattice material. 

Fig. 15. The compressive stress–strain curves of butterfly lattice of TA with 
different vertical bar lengths. 

Fig. 16. SEA of the TA butterfly lattice with different vertical bar lengths.  
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Appendix A. . Deformation analysis for the first substructure 

The force condition of the lattice is shown in Fig. 8. The vertical force can be divided into axial and tangential forces for the free boundary 
condition, as shown in Fig. 8(b). The vertical deformation of the beam is 

δ1
Z =

FT l3
1

3EsI
cosω+ θBl1cosω (A.1) 

θB is the angle generated by the bending moment of the point B. 

FT = F1cosω (A.2)  

MB = F1l1cosω (A.3) 

As shown in Fig. 6(c), the angle of the point B is 

θB =
2MBl2(l − l1)cosω
[4l2 + 3(l − l1) ]EsI

(A.4) 

The equivalent strain of the lattice cell can be shown as 

εZ =
2δ1

Z

H
(A.5)  

Appendix B. . Stress analysis for the first substructure 

For the free boundary condition, the bending moment of the point B is 

Fig. 17. Ashby map of energy absorption per unit volume versus density. This chart compares the bending-dominated lattice against other most advanced metallic 
and composite structures so far. The Ashby map is adapted from reference[44]. 
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MB = (F1 − f )l1cosω = (1 − μ)F1l1cosω (B.1) 

Where f is the sliding friction force applied on the point C and µ is the coefficient of friction. The critical bending moment when the plastic hinge is 
completely formed is 

Mp =
1
4
t3σs (B.2) 

Accordingly, the plateau fore is 

Fplateau
1 =

t3σs

4(1 − μ)l1cosω (B.3)  

Appendix C. . Deformation analysis for the second substructure 

The vertical deformation at point B is composed of the elastic deformation of the beam BD δe
Z, and the plastic deformation of the plastic hinge δp

Z 

δB
Z = δe

Z + δp
Z (C.1) 

the elastic deformation of the beam BD is 

δe
Z =

(l − l1)(l2 + 3t)
[(l2 + 3t) + 2(l − l1) ]Es

⋅
F2

t2 (C.2) 

The increment of the plastic strain in the plastic zone is 

εp =
Δσ
Et

(C.3) 

The thickness of the plastic zone in the plastic hinge is seen as t. Therefore, the vertical deformation due to the plastic deformation is 

δp
Z =

F2

t2Et
(C.4) 

Where Et is the tangential modulus of the parent material. 
and 

δB
Z = δe

Z + δp
Z = Ω

F2

t2 (C.5)  

Appendix D. . Stress analysis for the second substructure 

Under the combined compressive and bending loads, the strength increased to the second stage when the plastic hinge was formed in the middle of 
the vertical beam. The bending moment of the beam BC is 

M2 = k
(
MB + Mp

)
= k

(
1
2
F2t +

1
4
t3σs

)

(D.1)  

k = kBD/(kBD + kBA)

Under the combined compressive and axial load, the plateau load can be expressed as 

M2

MP
+

(
F′

2

Fp

)2

= 1 (D.2) 

Where Mp = σst3/4 and Fp = σst2 are the plastic bending moment and the plastic compressive load, respectively, F′
2 is the axial load of beam BC, 

then 

F′
2 = LF2 (D.3)  

L =
2(l − l1)

l2 + 3t + 2(l − l1)

The plateau compressive load of the second stage is 

Fplateau
2 =

(
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
L2(1 − k) + k2

√
− k

)

L2 t2σs (D.4)  
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