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ABSTRACT

Richtmyer–Meshkov (RM) instability of a single-mode SF6–air interface subjected to a convergent shock is investigated experimentally. The
convergent shock tube is specially designed with an opening tail to weaken the Rayleigh–Taylor effect and eliminate the reflected waves’
effect. The gas layer scheme is used to create a heavy gas environment at the upstream side of the interface. Before phase inversion is finished,
the amplitude reduction is accelerated, but the Bell–Plesset (BP) effect in this process is found to be negligible. After phase inversion is com-
pleted, the linear growth rate is generally predicted due to small amplitude and the weak BP effect. In nonlinear regime, an existing nonlinear
model is revised based on the Pad�e approximation to give a better prediction of amplitude growth. The spike amplitude grows almost linearly,
whereas the bubble amplitude gradually saturates and even reduces. For a heavy-light interface in convergent geometry, although both the
spike and bubble amplitude growths are promoted by the BP effect, the spike growth is more promoted than the bubble. The BP effect enhan-
ces generation of the second-order harmonic, which results in saturation and reduction of the bubble amplitude. The discrepancy in the BP
effect between light-heavy and heavy-light interfaces is qualitatively demonstrated for the first time.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0167248

I. INTRODUCTION

Richtmyer–Meshkov (RM) instability1,2 develops at the interface
of two impulsively accelerated fluids, each of different density. The ini-
tial perturbation amplitude grows continuously mainly due to pressure
perturbation and baroclinic vorticity induction, and, finally, turbulent
mixing may occur. This phenomenon was first theoretically investi-
gated by Richtmyer1 and later experimentally verified by Meshkov.2

RM instability is closely related to the Rayleigh–Taylor (RT) instabil-
ity,3,4 which occurs when a light fluid accelerates a heavy fluid.
However, RM instability occurs regardless of the relative position of
the gases at the interface (heavy–light or light–heavy, i.e., the shock
wave propagates from a heavy fluid to a light fluid or vice versa) and
can be considered as an extension of the RT instability, where the con-
stant acceleration of the interface is replaced by an impulsive accelera-
tion. RM instability is an important phenomenon occurring in many
applications at length and time scales spanning several orders of mag-
nitude.5,6 A substantial amount of effort has been invested in the RM
instability studies in recent decades.

For a single-mode light-heavy interface, the perturbation ampli-
tude initially grows and continues to grow after the shock impact.2,7–9

For a heavy-light interface, after the shock impact, the interface will
experience a phase inversion, namely, the amplitude first reduces to
zero and then grows in the opposite direction.10–13 In the previous
studies, the development of a single-mode perturbation induced by a
shock wave in planar geometry has been greatly investigated.
However, in real scenarios, RM instability often occurs in cylindrical
or spherical geometry. In the convergent RM instability, the perturba-
tion development will be affected by more mechanisms because both
radial and angular directions are involved. Bell14 and Plesset15 first
analyzed the early-time growth of the RT instability in cylindrical and
spherical geometries and found that the perturbation growth rate
varies with interface radius, referred to as the Bell–Plesset (BP) effect.
In addition, for continuous radial flow behind the convergent shock,
the interface is in a nonuniform pressure field as a whole, which inevi-
tably introduces the RT effect.16–18 Therefore, coupling of the BP effect,
RT effect, and multiple impacts (shocks reflect back and forth between
the interface and convergence center) greatly increases the complexity
of the convergent RM instability.

Theoretically, Mikaelian considered a spherical system composed
of multiple layers of concentric fluid shells and reported analytical
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solutions for specific conditions.19–21 The theory proposed by
Mikaelian was further extended by Lombardini and Pullin22 to predict
the linear growth of three-dimensional perturbations induced by a
convergent shock wave. Based on the perturbation expansion method,
solutions to the perturbation growth in cylindrical geometry with accu-
racy, respectively, up to the third order23 and fourth order24 have been
provided, and a nonlinear model based on the Pad�e approximation
was proposed.25 A weakly nonlinear model was derived by Wang
et al.26 (named the W-model hereinafter) through considering the
growth of a small perturbation on a cylindrical interface between two
incompressible fluids. This model, however, did not consider cylindri-
cal motion of the balanced position of interface. Later, the W-model
was further modified (named the mW-model hereinafter) to predict
the development of the cylindrical interface subjected to arbitrary
radial motion.27 The stretching/compressing effect of the RM instabil-
ity in convergent geometry was evaluated.28 According to the nonlin-
ear model for predicting the bubble evolution in planar geometry,29

Zhao et al.30 popularized this model to the RT instability induced by
centripetal volumetric force in cylindrical geometry. In addition, theo-
retical modelings and numerical simulations on magnetohydrody-
namic RM instability in convergent cylindrical geometry were also
investigated.31–34 Based on the Bell equation, a refined compressible
model that considers the premixed width of the initial interface was
proposed.35 Also, a theoretical model for the convergent nonstandard
RM instability considering baroclinic vorticity, geometric convergence,
and nonuniform impact of a rippled shock was proposed.36

Experimentally, an annular coaxial vertical diaphragmless shock
tube was designed, and the perturbation development in cylindrical
geometry was studied.37 By using the gas lens technique, a convergent
shock was generated by refracting a planar shock at a light–heavy
interface, and the development of a single-mode heavy–light perturba-
tion was investigated.38 Following this technique, experiments on
heavy–light perturbation growths in cylindrical geometry have been
conducted,39 and the W-model26 was modified based on the Pad�e
approximation. The first measurements of single-mode perturbation
amplitude in the convergent RM instability were performed by Ding
et al.,17 and the RT stabilization was found to reduce the growth rate.
By taking the RT stabilization into account, a modified model based
on the Bell equation was proposed to predict the perturbation growth
before the arrival of the reflected shock from the convergence center
(reshock for short hereinafter). The long-term effect of the RT stabili-
zation even leads to a phase inversion on the single-mode light-heavy
interface before reshock for appropriate initial conditions.40,41 In these
experimental studies, the BP effect, RT effect, and reshock are generally
coupled together. To decouple them, a novel convergent shock tube
was specially designed with an opening tail, i.e., the convergent shock
leaves the test section without focusing,42 and the nonlinear effect on
the convergent RM instability of a light-heavy interface was
highlighted.

Note that these experimental works in convergent geometry pri-
marily focused on light–heavy interfaces. In inertial confinement
fusion, the typical capsule consists of an outside ablator layer and an
inside fuel layer, usually lighter than the ablator layer.5 As a result,
understanding the hydrodynamic instability caused by the interaction
of a convergent shock wave with a heavy–light interface is vital. The
development of a heavy–light interface subjected to a convergent shock
is rarely investigated in experiments, probably because of the presence

of phase inversion which increases complexity of flow analysis, and
difficulties encountered in creating a heavy gas environment. If the
ambient gas at the upstream side of interface is not air, the first thing is
to replace air by other heavy gas. However, it is difficult to ensure the
uniformity of the heavy gas concentration, which greatly affects
the stability of the convergent shock. Obviously, we can use air as the
heavy gas, and helium, for example, as the light gas. Nevertheless, there
are some limitations when using this gas combination. First, if helium
is injected into the downstream side of the interface, the end of the test
section must be sealed by using such as adhesive tape. Although the
adhesive tape will be broken after the shock impact, the reflected shock
will inevitably be generated and affect the evolving interface. Second,
because the sound speed of helium is quite high, the shocked air-
helium interface has a greater moving velocity. Due to the length limi-
tation of the test section, the air–helium interface only evolves for
about 200–300 ls before it exits the test section. Considering the effect
of the reflected shock, the evolving duration of the shocked interface
will be more shortened. Third, it is difficult to clearly capture the trans-
mitted shock wave in helium because of its weaker intensity. However,
we need to determine the concentration of helium through comparing
the velocities of the transmitted shock between experiment and one-
dimensional theory. As a result, it would be better to use other heavier
gas than air at the upstream side of the interface.

How the BP effect and nonlinearity behave in the heavy–light
interface development induced by a convergent shock, and what are
the differences of the RM instabilities between the heavy–light and
light–heavy interfaces, remain unclear, which motivate the present
work. In this work, a gas layer scheme is used to create a heavy gas
environment. Except for the single-mode interface, an undisturbed
interface is added at the upstream side of the single-mode one. Only
air between these two interfaces is replaced by heavy gas. The soap-
film technique is used to generate the undisturbed and single-mode
interfaces. The experiments are conducted in the shock tube with an
opening tail42 to highlight the BP effect on the single-mode heavy–light
interface. In the following part, the experimental methods are first pro-
vided, then the flow features and amplitude growth are qualitatively
and quantitatively described. An existing nonlinear model is modified
to better predict the amplitude growth. Finally, the difference in the BP
effect on the developments of heavy–light and light–heavy interfaces is
explained.

II. EXPERIMENTAL METHODS

In this work, the development of a single-mode SF6–air interface
subjected to a cylindrically convergent shock wave is investigated. To
form an SF6–air interface, air in the upstream side of the interface
must be replaced by SF6. However, we do not fill the whole driven sec-
tion and test section with SF6 because it will waste a lot of SF6 in
experiments, and it is difficult to determine and control the volume
fraction of SF6 in such a large space. Note that the non-uniformity of
the gas concentration will result in an incident convergent shock with
obvious perturbations. In this work, the gas layer scheme is used to
form an SF6–air interface. As shown in Fig. 1(a), two soap-film interfa-
ces, including a single-mode one and an undisturbed cylindrical one,
are formed in the test section in advance. Then, the only thing is to
replace air between these two interfaces by SF6. When a planar shock
passes through the concave wall, a cylindrical shock is formed and
converges along the oblique wall. As the cylindrical shock meets the
undisturbed cylindrical interface, a cylindrical transmitted shock will
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be generated in SF6 and, subsequently, interacts with the single-mode
SF6–air interface. The distance from the undisturbed interface to the
single-mode interface is large enough (90mm) to weaken the interface
coupling effect and waves’ effect.4,43

To generate a well-defined initial discontinuous interface, the
soap-film technique44–46 is used. Before the interface formation, three
transparent devices, as shown in Fig. 1(b), are manufactured by com-
bining two transparent acrylic plates (3.0mm in thickness) with pedes-
tals (7.0mm in height). Two identical constraint strips (0.5mm in
width and 2.0mm in height) are attached to the pre-carved grooves to
constrain the soap-film. The ratio of the total height of the constraint
strips protruding into the flow field (0.3mm on each side) to the height
of the whole flow field is smaller than 10%, and, thus, the constraint
strips have negligible effects on the shocked flow.47 To generate the
soap-film interface, the constraint strips are wetted by the soap solu-
tion (78% pure water, 2% sodium oleate, and 20% glycerin by mass) in
advance, then a rectangular brush with the soap solution attached is
pulled carefully along the constraint strips, and, finally, the soap-film
interface is generated. Afterward, SF6 is injected into the space between
these two interfaces through the inflow hole, and air is evacuated
through the outflow hole. An oxygen concentration detector is placed
at the outflow hole to monitor the concentration of SF6. Once the con-
centration of air is smaller than 0.5%, the inflation is stopped.
Subsequently, the devices are joined together and gently inserted into
the test section.

The single-mode interface studied in this work can be expressed
as rðhÞ ¼ R1 þ a0 cosðmhÞ, where R1 ¼ 235 mm is the mean radius
of the initial interface, a0 is the initial amplitude, and m is the azi-
muthal mode number. The variation of interface radial position can
reflect the convergent effect, and the perturbation amplitude represents
the degree of perturbation development in RM instability. Five cases
labeled as m� a0, as shown in Table I, are studied. For the first three
cases (group I), the mode number is fixed to evaluate the effect of ini-
tial amplitude on flow features. For the last three cases (group II), we

fix ma0 to evaluate the effect of mode number on flow features. The
physical parameters for each case are shown in Table I. The boundary-
layer effect was evaluated in the previous work48 and found to be negli-
gible. Three-dimensionality of the soap-film interface in cylindrical
geometry can be expressed as follows:40

rðz; hÞ ¼ Ricoshðz=RiÞ þ aðzÞ sinðmh� p=2Þ;
where a(z) is the perturbation amplitude at the height z that can be
solved numerically.40 The integral average amplitude of the interface
with minimum-surface feature (av) is expressed as

av ¼

ðh
�h

aðzÞdz
2h

;

where h is the half height of the test section. The value of av for each
case is provided in Table I. Three-dimensionality is more prominent
for an interface with a large initial amplitude and short wavelength.

Experiments are conducted in a convergent shock tube with a
smooth concave-oblique-convex wall designed to modify the shock
shape,42 as shown in Fig. 1(a). The present design enables a strong con-
vergent shock near the convergence center to exit the convergent sec-
tion without shock focusing and reflecting. Thus, the RT effect and
reshock are eliminated. The post-shock flow field is recorded by high-
speed schlieren photography. The frame rate of the high-speed video
camera (FASTCAM SA-Z, Photron Limited) is set to be 67 200 frames
per second, and the exposure time is 1.25 ls. Due to the different sizes
of observation domains required, the spatial resolution for different
cases is within 0.2976 0.001mm pixel–1. The Mach number of the
incident cylindrical shock wave when it reaches the single-mode SF6-
air interface is 1.356 0.01. The ambient pressure and temperature are
101.36 0.1 kPa and 297.906 2.55K, respectively.

III. RESULTS AND DISCUSSION
A. Background flows

Experimental schlieren images of the incident convergent shock
(IS) interacting with the undisturbed cylindrical SF6–air interface are
shown in Fig. 2(a). The time origin, i.e., t¼ 0 ls, is defined as the
moment when IS meets the initial interface (II). Initially, IS has a per-
fectly cylindrical shape (�82 ls), and no obvious disturbance waves
are observed behind it. These indicate that the gas layer scheme that

FIG. 1. Schematics of the convergent shock tube (a) and the interface formation
device (b).

TABLE I. Physical parameters for all cases. m is the azimuthal mode number of the
perturbation, a0 is the initial perturbation amplitude at the boundary slice, av is the
average perturbation amplitude, k is the wavelength, and k is the perturbation wave-
number. Ms is the Mach number of the incident shock. w(SF6) is the SF6 volume
fraction within the gas layer, and Aþ is the post-shock Atwood number. DV is the
experimental interface velocity jump by shock impact, and DV t is the theoretical
value. The units for velocity, length, and time are m s�1, mm, and ls, respectively.

Case m a0 av k kav Ms w(SF6) Aþ DV DV t

48–3.0 48 3.0 2.580 30.761 0.527 1.35 0.82 0.65 109.7 110.1
48–2.0 48 2.0 1.725 30.761 0.352 1.36 0.79 0.64 117.7 114.3
48–1.5 48 1.5 1.295 30.761 0.264 1.36 0.83 0.65 111.7 111.8
36–2.0 36 2.0 1.834 41.015 0.269 1.35 0.83 0.65 109.6 108.7
24–3.0 24 3.0 2.882 61.523 0.294 1.35 0.80 0.64 109.6 111.0
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creates a heavy gas environment at the upstream side of the interface
does not affect the quality of IS. After IS interacts with II, an upstream-
propagating reflected rarefaction waves that are not observed in schlie-
ren images due to their weak intensity and a downstream-moving
transmitted shock (TS) are generated. An upstream-propagating
reflected shock (RS) is also observed due to the reflection of IS from
the filaments used to restrict the soap-film interface.49 TS and RS also
remain cylindrical shapes (126 ls). The shocked interface (SI) moves
downstream also with a cylindrical shape. As late stages (543 ls), the
interface profile becomes thicker due to the diffusion of soap droplets.
Note that the rightmost dark line is the shocked interface, whereas the
leftmost dark line represents the position of the filaments.

Figure 2(b) gives the time-variation of displacements of shock
waves and SI. Their moving velocities are also provided by linearly fit-
ting the data extracted from the central parts of their profiles. It is
found that the shock waves and interface move almost linearly, and
their velocities agree well with the predictions from one-dimensional
gas dynamics. The constant velocity of SI indicates that the RT effect is
negligible. Note that although the test section is designed with an
opening end, there are waves emerging from the exit corners and
reflecting to interact with the evolving interface. In the current work,
the effective experimental time has ended before these reflected waves
arrival.

B. Perturbed interface morphologies and flow features

Experimental schlieren images of the single-mode SF6–air interfa-
ces accelerated by IS for different cases are shown in Fig. 3. The time
origin is defined as the moment when IS arrives at the mean position
of II. Taking case 48–3 as an example, after IS passes through II, a per-
turbed TS propagates downstream (56 ls). Note that the reflected
shock (RS) from the filaments does not affect the interface develop-
ment significantly since only the downstream interface is concerned.49

The amplitude of SI first decreases after the shock impact and then
reaches almost zero (101 ls). Afterward, the original peaks (troughs)
become troughs (peaks), which is known as phase inversion. After

phase inversion, the amplitude of SI starts to develop in the opposite
direction and increases gradually. Note that several shadow structures,
marked by white dashed lines, follow the bubble front (190 ls). This
phenomenon was also observed in the previous work,50 in which the
RM instability of a three-dimensional SF6–air interface with a
minimum-surface feature induced by a planar shock was investigated.
The formation of these structures is possibly ascribed to the difference
in pressure perturbation at different planes due to the minimum-
surface feature of the interface. The soap droplets may also account for
the formation of these structures. At late stages, spikes become longer
and more tapered than bubbles, and the interface asymmetry becomes
obvious (517 ls). For different cases, the interface morphologies are
similar.

C. Phase inversion and linear growth stages

Phase inversion is the specific phenomenon that occurs in the
shocked heavy-light perturbation. The amplitude growth before and
shortly after phase inversion is given in Fig. 4, in which the amplitude
before phase inversion is defined as negative. Here, the amplitude is
normalized as a ¼ am=R0, and the time is normalized as
s ¼ vwðt � t�Þm=R0, with t� being the time when phase inversion is
completed and vw being the linear growth rate, which will be discussed
below. The amplitude is measured based on the central part of the
interface profile, and error bars result from the thickness of the inter-
face profile. The error bars seem significant because the amplitude
scale is limited. Before phase inversion is finished, the amplitude
reduction is accelerated as time proceeds. For the RM instability, actu-
ally, there is a startup process before the perturbation amplitude grows
linearly. During the startup process, the amplitude growth is acceler-
ated for a light–heavy interface,51 whereas the amplitude reduction is
accelerated for a heavy–light interface.52 Yang et al.52 proposed a linear
model (the YZ-model) in planar geometry by constructing the velocity
perturbations and pressure perturbations in different regions of the
flow field. The YZ-model can predict the acceleration process of per-
turbation growth rate from zero to the linear one. Therefore, it is

FIG. 2. (a) Experimental schlieren images of an undisturbed cylindrical SF6–air interface induced by an IS. Numbers denote the time in ls. (b) The time-variation of displace-
ments of shock waves and interface. IS, incident convergent shock; TS, transmitted shock; RS, reflected shock; II, initial interface; SI, shocked interface.
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possible to predict the startup process for the RM instability in planar
geometry. As shown in Fig. 4, the YZ model generally predicts the
acceleration process before phase inversion.

In convergent geometry, the BP effect always promotes amplitude
growth, and, therefore, it prevents the interface from phase inversion.
The stretching/compressing effect, a prominent part of the BP effect, is
in proportion to the real-time amplitude of the interface.28 As the
amplitude decreases, the BP effect gradually weakens. Thus, the reduc-
tion rate of the amplitude before phase inversion increases. In other
words, the BP effect also contributes to the acceleration of amplitude
reduction.53 To evaluate the BP effect, the YZ-model is extended to
cylindrical geometry in this work. By considering the BP effect and by
integrating the Bell equation,14 the modified YZ model (the mYZ-
model) can be expressed as

amYZ ¼ a0 þ R2
0

ðt
tþ0

_aYZðtÞ
R2ðtÞ dt; (1)

where _aYZðtÞ is the growth rate obtained by the YZ-model and tþ0 is
the time just after shock passage. As shown in Fig. 4, the predictions

FIG. 3. Developments of single-mode
SF6–air interfaces accelerated by IS for
different cases. Symbols have the same
meaning as those in Fig. 2.

FIG. 4. Amplitude growths before and shortly after phase inversion.
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by the mYZ-model and YZ-model coincide, which indicates that the
BP effect is negligible. Actually, the interface radius only reduces
� 10mm before phase inversion, and, thus, the BP effect is negligible.

After phase inversion, the heavy–light perturbation amplitude gen-
erally starts to grow linearly in planar geometry.54 In convergent geome-
try, however, the BP effect always exists and promotes amplitude
growth. In the previous experiments conducted in the convergent shock
tube with an opening tail,42 the theory fails to predict the initial growth
rate because the BP effect is stronger due to rapid change of interface
radius. In this work, shortly after phase inversion, the interface ampli-
tude is very limited. The additional amplitude growth rate induced by
the BP effect is relatively weak compared with the growth rate imparted
by the incident shock. To predict the linear growth rate of a heavy–light
perturbation, the irrotational model proposed by Wouchuk and
Nishihara55 (named theWNmodel) is used, which can be expressed as

vw ¼ m
R0

av
1þAþ

2
ð1þVr=ViÞðV1�DVÞþ1�Aþ

2
ð1�Vt=ViÞDV

� �
;

(2)

where Vi; Vt; Vr, and V1 are the velocities of the incident shock, trans-
mitted shock, reflected rarefaction front, and the flow behind the inci-
dent shock, respectively. Comparison of the theoretical predictions
and experimental measurements of the linear growth rates is provided
in Table II. The WN model slightly underestimates the linear growth
rates compared to the experimental values, probably because the BP
effect induces an additional growth rate in experiments.

D. Nonlinear growth rate

The amplitude growths after phase inversion for groups I and II are
presented in Figs. 5(a) and 5(b). The normalization method is the same
as that in Fig. 4. The observed amplitude growths in group II collapse,
which means the amplitude growth is insensitive to mode number under
the conditions studied. However, the amplitude growths in group I devi-
ate from each other as time proceeds. This deviation is probably ascribed
to the significant difference in vw=DV , as shown in Table II, because the
normalization method does not consider the interface convergence effect.
At late stages, the amplitude growth rates begin to decrease due to
increasing nonlinearity, and the amplitude even tends to saturate.

For the evolution of a heavy–light perturbation induced by a pla-
nar shock, a weakly nonlinear model proposed by Zhang and Guo56

(named the ZG model) can be used to predict the amplitude growth
rate. The ZG model can be expressed as

vZG ¼ vw
1þ /kvwt

; (3)

where

/ ¼ 3
4

ð1þ AÞð3þ AÞ
3þ Aþ ffiffiffi

2
p ð1þ AÞ1=2

h i

�
4ð3þ AÞ þ ffiffiffi

2
p ð9þ AÞð1þ AÞ1=2

h i

ð3þ AÞ2 þ 2
ffiffiffi
2

p ð3� AÞð1þ AÞ1=2
h i : (4)

The ZG model underestimates amplitude growth in convergent
geometry, as shown in Fig. 5, mainly because the BP effect promotes

TABLE II. Comparison of the theoretical (vw) and experimental (ve) growth rates for all cases shortly after the phase inversion. vw=DV is the ratio of theoretical growth rate to
interface jump velocity.

Case 48-3 48-2 48-1.5 36-2 24-3

vw �26.21 �17.60 �13.17 �13.96 �14.59
ve �30.066 4.27 �22.966 2.46 �16.386 1.66 �18.286 1.11 �19.226 1.88
vw=DV �0.286 �0.188 �0.144 �0.154 �0.158

FIG. 5. Nonlinear evolutions of amplitude growth in group I (a) and group II (b).
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amplitude growth (the interface radius moves more than 60mm after
phase inversion, and the BP effect is significant). Similar to the light–
heavy interface,42 the BP effect also inhibits nonlinearity and extends
the linear regime in this work.

In convergent geometry, a weakly nonlinear model (the mW-
model) was proposed by Wang et al.27 to estimate amplitude growth
of a cylindrical interface subjected to arbitrary radial motion, and an
analytical solution up to the third order was given under a constant
background flow. The expressions of the mW-model are provided in
Appendix. Note that the positive Atwood number is defined for the
heavy–light interface in the mW-model, which is different from the
definition in the ZG model. The predictions from the mW-model for
different cases are also provided in Fig. 5. Relative to the ZG model,
the mW-model provides a better prediction to amplitude growth at
early stages (s < 1.0). Note that the BP effect promotes amplitude
development, resulting in a larger linear growth rate than the predic-
tion from the WN model. From intermediate stages, the mW-model
overestimates the experimental results and even gives an incorrect pre-
diction at late stages. Note that the mW-model contains higher order
of _a0. In our experiments, _a0=DV is much larger than the value given
in the original paper of the mW-model, which probably causes the
overestimation of the high-order components.

To extend the mW-model applicability, the Pad�e approximation
is used. Because the mW-model is complicated and the Pad�e approxi-
mation is difficult to be executed directly, the mW-model is expanded
into the Mclaurin series of time t first,

as ¼
X
i¼0

rit
i; (5)

ab ¼
X
i¼0

dit
i; (6)

where as and ab are amplitudes of spike and bubble, respectively, and
r0 ¼ a0; d0 ¼ �a0; r1 ¼ _a0; d1 ¼ � _a0,

r2 ¼ a20 _a0ð6� 9Amþ 2m2ÞR0DV þ a30ðA� 3mÞmDV2

4R4
0

� a0 _a0 _a0ð�27þ 5m2 þ 3Amþ 3A2m2ÞÞ þ 12DV
� �

24R2
0

� _a0ð _a0 þ 2A _a0m� 4DVÞR0 � 4a0 _a0AmDV
4R2

0
;

d2 ¼� a20 _a0ð6� 9Amþ 2m2ÞR0DV � a30ðA� 3mÞmDV2

4R4
0

þ a0 _a0 _a0ð�27þ 5m2 þ 3Amþ 3A2m2ÞÞ � 12DV
� �

24R2
0

� _a0ð _a0 þ 2A _a0mþ 4DVÞR0 � 4a0 _a0AmDV
4R2

0
:

Because ri and di are irrelevant to time t, by taking the Pad�e approxi-
mation to the Mclaurin series, the extended model (named the eW-
model) can be expressed as

as ¼
r1 r21 � 2r0r2
� �
r21 � r0r2

t þ r0

r22
r21 � r0r2

t2 � r1r2
r21 � r0r2

t þ 1
; (7)

ab ¼
d1 d21 � 2d0d2
� �
d21 � d0d2

t þ d0

d22
d21 � d0d2

t2 � d1d2
d21 � d0d2

t þ 1

: (8)

The predictions of amplitude growth from the eW-model are also pre-
sented in Fig. 5. For small initial ma0, a better agreement with the
experimental results is achieved. As ma0 increases, although the eW-
model underestimates amplitude growth, it presents a correct develop-
ment trend.

The amplitudes of bubble and spike in groups I and II are
extracted from experiments and predicted by models, as presented in
Figs. 6(a) and 6(b). Note that the spike (bubble) radius is smaller
(larger) than the balanced position, and thus, the negative (positive)
amplitude is defined for the spike (bubble). In convergent geometry,
the BP effect always promotes amplitude growths of bubble and spike.
This promotion results in a longer linear regime of the spike growth
during the time studied. However, the bubble growth quickly saturates

FIG. 6. Amplitude growths of bubble and spike in groups I (a) and II (b). The lines
represent the same meaning as those in Fig. 5.

Physics of Fluids ARTICLE pubs.aip.org/aip/pof

Phys. Fluids 35, 106112 (2023); doi: 10.1063/5.0167248 35, 106112-7

Published under an exclusive license by AIP Publishing

 08 April 2024 03:41:16

pubs.aip.org/aip/phf


and even reduces. This will be explained later. The ZG model underes-
timates growths for both spike and bubble due to the promotion by
the BP effect. The mW-model well predicts amplitude growths of bub-
ble and spike at early stages but fails to predict them from intermediate
stages, probably due to the overestimation of the second-order har-
monic. The eW-model has a longer effective time than the mW-
model, especially for cases with small initialma0.

To illustrate contributions of the BP effect to bubble and spike
growths in cylindrical geometry and explain difference of the BP effect
in light–heavy and heavy–light interfaces, a schematic, as shown in
Fig. 7, is provided. Here, the BP effects on in-going part and out-going
part are considered separately. Assuming that at time t, the balanced
radius of the interface is R, and the amplitudes of in-going part and
out-going part are ai and ao, respectively. The masses of in-going part
(Mi) and out-going part (Mo) can be expressed as

Mi ¼ q pR2 � pðR� aiÞ2
� �

;

Mo ¼ q pðRþ aoÞ2 � pR2
� �

:
(9)

After time Dt, the balanced radius of the interface, the amplitudes of
in-going part and out-going part are R0 ¼ Rþ DR; a0i ¼ ai þ Dai,
and a0o ¼ ao þ Dao. Taking the out-going part as an example and
assuming that the mass is conserved, we have

q pðRþ aoÞ2 � pR2
� �

¼ ðqþ DqÞ pðR0 þ a0oÞ2 � pR02
h i

: (10)

After ignoring the high-order terms and note that ao=2R � 1, we
have

Dao ¼ � Rao
Rþ ao

Dq
q

þ DR
R

	 

: (11)

Following the similar approach, we have

Dai ¼ � Rai
R� ai

Dq
q

þ DR
R

	 

: (12)

Note that the converging velocities of these two parts are differ-
ent, resulting in perturbation growth. For a heavy–light interface, the
in-going parts are spikes, and the out-going parts are bubbles.

Generally, spikes are sharper and longer than bubbles, i.e.,
Das ¼ Dai > Dao ¼ Dab. As a result, the spike growth is accelerated
more by the BP effect than the bubble growth, which means the BP
effect amplifies the discrepancy between spike and bubble growths in
convergent RM instability of a heavy–light interface. From the per-
spective of modal decomposition, the divergence between spike and
bubble growths is mainly caused by the second-order harmonic, which
the growth rate can be expressed as

v2rd � 1
2
ðvs � vbÞ ’ Das � Dab

2Dt
: (13)

For a heavy–light interface in convergent geometry, the BP effect pro-
motes generation and development of the second-order harmonic,
causing saturation and even reduction of the bubble amplitude. For a
light–heavy interface, the BP effect contributes more to bubble growth
than spike growth, resulting in different behaviors of bubble and spike
growths.

IV. CONCLUSIONS

The development of a single-mode SF6–air interface subjected to
a convergent shock is investigated. To decouple the Bell–Plesset (BP)
effect from the Rayleigh–Taylor (RT) effect and the reflected shock,
the convergent shock tube is specially designed with an opening end,
which allows the convergent shock to leave the test section without
focusing. To create a heavy gas environment at the upstream side of
the interface, the gas layer scheme is used. An undisturbed interface
and a single-mode interface are formed by the soap-film technique,
and air between these two interface is replaced by SF6. The results
show that the RT effect can be ignored, and the effect of reflected
waves inside the gas layer is limited.

Five single-mode interfaces with different amplitudes and wave-
lengths are considered. The schlieren images show that the perturba-
tion amplitude first reduces to zero and then increases in the opposite
direction. This process is known as phase inversion. The amplitude
reduction is accelerated in the startup process before phase inversion is
finished, and the BP effect is found to be negligible in this process.
After phase inversion, the amplitude experiences linear and nonlinear
growths. In the previous work, the linear growth rate was always not
correctly predicted because the BP effect is strong. In this work, shortly
after phase inversion, the amplitude is small, and the BP effect is weak.
The linear model proposed by Wouchuk and Nishihara55 roughly pre-
dicts the linear growth rate by considering the three-dimensionality
correction.

The nonlinear model proposed by Wang et al.27 (mW-model)
can only predict the earlier evolution. Based on the Pad�e approxima-
tion, the mW-model is modified to give a better prediction of the
amplitude growth. We find that the spike amplitude grows almost line-
arly, whereas the bubble amplitude gradually saturates and even
reduces. For a heavy–light interface in convergent geometry, although
both spike and bubble amplitude growths are promoted by the BP
effect, the spike amplitude growth is more promoted than the bubble
amplitude growth. Moreover, the BP effect enhances generation of the
second-order harmonic, which results in saturation and reduction of
the bubble amplitude. For a light–heavy interface, the BP effect con-
tributes more to the bubble amplitude growth than the spike amplitude
growth. The discrepancy in the BP effect between the light–heavy and
heavy–light interfaces is qualitatively demonstrated for the first time.FIG. 7. A schematic diagram of the BP effect on bubble and spike.
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APPENDIX: FORMULAS OF THE MW-MODEL

The three orders of the mW-model and the 3rd feedback to 1st
can be written as

a1;1 ¼ a0 þ _a0tCr; (A1)

a2;2 ¼ a0 _a0t A
m
R
� 1
2
1
R

	 

ðCr � 1Þ

þ _a20t
2 1

6
A
m
R
� 1
4
1
R

	 

C2
r �

2
3
A
m
R
Cr

� �
; (A2)
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where Cr ¼ R0=RðtÞ is the convergent ratio and _a0 is the initial
growth rate.

The amplitude of bubbles and spikes can be written as

as=b ¼ 7ða1;16a2;2 þ a3;3 þ a3;1Þ: (A5)
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