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A computational fluid dynamics (CFD) solver for a GPU/CPU heterogeneous architecture parallel computing 

platform is developed to simulate incompressible flows on billion-level grid points. To solve the Poisson equation, 

the conjugate gradient method is used as a basic solver, and a Chebyshev method in combination with a Jacobi 

sub-preconditioner is used as a preconditioner. The developed CFD solver shows good performance on parallel 

efficiency, which exceeds 90% in the weak-scalability test when the number of grid points allocated to each GPU 

card is greater than 2083 . In the acceleration test, it is found that running a simulation with 10403 grid points on 

125 GPU cards accelerates by 203.6x over the same number of CPU cores. The developed solver is then tested 

in the context of a two-dimensional lid-driven cavity flow and three-dimensional Taylor-Green vortex flow. The 

results are consistent with previous results in the literature. 
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. Introduction 

Computational Fluid Dynamics (CFD) is used in many engineering

elds. To increase computational speed and size, parallel computing is

ecoming a regular technique used in almost all commercial and open-

ource CFD software. Along with the rapid development of hardware,

arallel computing is experiencing the transition from the multi-core

ra to the many-core era. As a representative of the many-core system,

he graphic processing unit (GPU) is used in an increasing number of

FD applications [1] . 

According to their governing equations, CFD solvers can be catego-

ized into those for compressible and incompressible flows. For a com-

ressible flow solver with an explicit time-marching scheme, the ap-

lication of a GPU/CPU heterogeneous architecture parallel computing

latform, hereinafter abbreviated as ‘GPU/CPU platform’, is relatively

ature [2–5] . In contrast, the development of CFD solvers for incom-

ressible flows on the GPU/CPU platform is limited by the frequent ex-

hange of data during the solution of the pressure Poisson equation,

hich typically consumes over 95% of the total computational cost when

he number of grid points is large. In this regard, the ability to simulate

ncompressible flows on the GPU/CPU platform is bounded by the per-

ormance of the Poisson equation solver, including its convergence per-

ormance, parallel efficiency, and computational cost. Although there

re many iteration methods for solving or preconditioning linear equa-

ions, some algorithms, such as the Successive Over Relaxatic (SOR)
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ethod, are not friendly to the GPU/CPU platform because of the se-

uential dependency of the solutions at different grid points in the same

teration step. Therefore, to build a CFD solver for incompressible flow,

t is crucial to find a GPU-friendly algorithm to solve the Poisson equa-

ion. 

There are some previous studies on linear equation solvers and pre-

onditioners on the GPU/CPU platform. The Jacobi iteration method

s a GPU-friendly algorithm, which was implemented by Thibault and

enocak [6] to build a CFD solver. They showed that running the code

n four GPU cards accelerated the simulation by 100x over four CPU

ores. However, the convergence performance of the Jacobi iteration

ethod is usually unsatisfactory when the dimension of the linear sys-

em is large. The conjugate gradient (CG) algorithm [7] , which is also

PU-friendly, often shows better convergence performance than the Ja-

obi iteration algorithm. The CG method was adopted by Zaspel and

riebel [8] to solve the Poisson equation, using the Jacobi iteration

ethod as a preconditioner. Conducted on up to 48 GPU cards, the

arallel efficiency of their method was reported as 41 . 3% and 95 . 3%
n weak-scalability and strong-scalability tests, respectively. Oyarzun

t al. [9] also used a Jacobi-preconditioned CG method to perform di-

ect numerical simulations and large-eddy simulations of incompress-

ble turbulence on unstructured mixed meshes. The simulation speed of

heir code on the GPU platform was 8 times faster than on the CPU plat-

orm. The multigrid algorithm is another GPU-friendly preconditioning

ethod. Cohen and Molemaker [10] used a multigrid method to solve
tober 2023 
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Table 1 

Parameters of preconditioners. 

PC ID PC 𝑁𝑃𝐶 subPC 𝑁𝑠𝑢𝑏𝑃𝐶 

01 - - - - 

02 Jacobi 1 - - 

03 Jacobi 5 - - 

04 Jacobi 10 - - 

05 Jacobi 15 - - 

06 Jacobi 20 - - 

07 Chebyshev 2 - - 

08 Chebyshev 2 Jacobi 1 

09 Chebyshev 2 Jacobi 5 

10 Chebyshev 2 Jacobi 10 

11 Chebyshev 2 Jacobi 15 

12 Chebyshev 2 Jacobi 20 
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he Poisson equation on the GPU platform. Tested on one GPU card,

heir solver was found to accelerate the simulation with 28 million grid

oints by 8x versus an eight-core CPU. Molemaker et al. [11] compared

he performance of the multigrid solver to the CG solver preconditioned

y an incomplete Cholesky method. They reported that the precondi-

ioned CG solver was unstable when the number of grid points exceeded

6 million. Jacobsen and Senocak developed an amalgamated parallel

D geometric multigrid linear equation solver [12] and nested it into a

FD solver [13] . They conducted a weak-scalability test of the parallel

fficiency of their CFD solver. In their test, they increased the number of

rid points from 71 million to 18 billion, and correspondingly increased

he number of GPU cards from 1 to 256. They found that when 256 GPU

ards were used, the parallel efficiency dropped to 22% . 

From the above overview of the existing incompressible flow CFD

olvers on the GPU/CPU platform, it is understood that the multigrid

ethod is efficient to solve the Poisson equation. An advantage of the

ultigrid method is that it provides excellent convergence performance

n a small number of iteration steps. For example, in the test case of

 3D lid-driven cavity flow on 2573 grid points [12] , the residual di-

ergence decreases by 10 to 12 orders of magnitude within 26 iter-

tion steps using the multigrid method, while 6000 Jacobi iterations

nly reduce the residuals by less than one order of magnitude. On the

ther hand, many CFD solvers can tolerate certain magnitude of resid-

al divergence without significantly changing the simulation results. In

his sense, there is an opportunity to choose an alternative precondi-

ioner to reduce computational cost and improve parallel efficiency. Al-

hough a different preconditioner is likely to result in a larger residual

ivergence than the multigrid method, it is possibly tolerable to the

FD solver. Therefore, we attempt to find an algorithm that is different

rom the multigrid method and meanwhile is friendly to the GPU/CPU

eterogeneous-architecture platform to construct the complete solver

or incompressible flow. 

In the present study, we attempt to find out whether there are other

reconditioner that can provide tolerable residual divergence with rel-

tively low computational cost. The optimal preconditioner is then em-

edded into the incompressible flow solver to support large-size parallel

omputing on billion-level grid points. The remainder of this paper is or-

anized as follows. In Section 2 , we present the numerical method and

ests of the Poisson equation solvers. In Section 3 , numerical examples

re given. In Section 4 , the main finding of the present study is summa-

ized. 

. Numerical methods and tests 

.1. Governing equations and discretization 

The continuity and momentum equations for incompressible flows

re expressed as 

𝜕𝑢𝑗 

𝜕𝑥𝑗 
= 0 , (1)

𝜕𝑢𝑖 

𝜕𝑡 
+ 𝜕 

𝜕𝑥𝑗 

(
𝑢𝑗 𝑢𝑖 

)
= − 𝜕𝑃 

𝜕𝑥𝑖 
+ 𝛎

𝜕2 𝑢𝑖 
𝜕 𝑥𝑗 𝜕 𝑥𝑗 

, (2)

here 𝑥𝑖 for 𝑖 = 1 , 2 , 3 represent Cartesian coordinates, with 𝑢𝑖 being the

elocity components in the corresponding direction, 𝑡 is the time, 𝑃 is

he pressure divided by the fluid density, and 𝛎 is the kinematic viscosity.

 finite difference scheme is used for spatial discretization. A second-

rder central-difference scheme is used to calculate the convection and

iffusion terms in the momentum equation. A first-order explicit Euler

cheme is used for time advancement. The projection algorithm [14] is

dopted to satisfy the divergence-free condition. Specifically, to evolve

he velocity from step 𝑠 to 𝑠 + 1 , the velocity field 𝑢∗ is predicted using

he momentum equation without the pressure gradient term as 

∗ 
𝑖 
= 𝑢𝑠 

𝑖 
+ Δ𝑡

( 

− 𝜕 

𝜕𝑥𝑗 

(
𝑢𝑠 
𝑗 
𝑢𝑠 
𝑖 

)
+ 𝛎

𝜕2 𝑢𝑠 
𝑖 

𝜕 𝑥𝑗 𝜕 𝑥𝑗 

) 

, (3)
2 
here Δ𝑡 represents the time step. The pressure is gained by solving the

ollowing Poisson equation. 

𝜕2 𝑃 𝑠 +1 

𝜕 𝑥𝑗 𝜕 𝑥𝑗 
= 1 

Δ𝑡 
𝜕𝑢∗ 

𝑖 

𝜕𝑥𝑗 
. (4) 

he velocity is then projected as 

𝑠 +1 
𝑖 

= 𝑢∗ 
𝑖 
− Δ𝑡 𝜕𝑃

𝑠 +1 

𝜕𝑥𝑗 
. (5)

.2. Poisson equation solver 

To choose an optimal Poisson equation solver for the follow-up tests

f the complete CFD solver, we conduct the simulation of the Taylor-

reen Vortex (TGV) case (see Section 3 for details of case setup) for 1000

ime steps to compare the computational time and residual divergence

btained from different preconditioners. The number of grid points is

0403 , and 53 GPU cards are used for parallel computing. 

The discretized Poisson equation is a large sparse linear equation sys-

em. The condition number of the coefficient matrix is typically large

hen the number of grid points is large. In this situation, a basic solver

ncorporated with a preconditioner is usually used to solve the linear

quation system. In this study, we have implemented two basic solvers,

amely the CG [7,15,16] and Generalized Minimum RESidual (GM-

ES) methods [16,17] , and two preconditioners, namely the Jacobi and

hebyshev methods [16] . Table 1 lists all preconditioners tested in the

resent study. As shown, we have tested in total 12 preconditioners.

C 01 corresponds to a none preconditioner condition. PC 02–06 uses

he Jacobi method to build the preconditioner with the iteration step

𝑃𝐶 ranging from 1 to 20. PC 07 uses the Chebyshev method. We note

hat in the Chebyshev iteration method, a sub-preconditioner (denoted

y subPC in Table 1 ) can be used. Jacobi iteration method is chosen as

he sub-preconditioner of Chebyshev iteration method, where the itera-

ion step of the sub-preconditioner 𝑁𝑆𝑢𝑏𝑃𝐶 ranges from 1 to 20, yielding

C 08–12. Each preconditioner is nested into both the CG and GMRES

olvers. Therefore, in total 24 Poisson equation solvers are tested. 

The major consideration for choosing the above basic solvers and

reconditioners is their implementation feasibility on a GPU platform.

ome algorithms, such as the Gauss-Seidel (GS) and successive overre-

axation (SOR) methods, are efficiency on pure CPU architecture but

annot be implemented on a GPU/CPU heterogeneous architecture. In

ontrast, the Chebyshev iteration method is a GPU-friendly algorithm.

o be specific, in the GS and SOR methods, the solution at each itera-

ion step is updated sequentially from the first grid point to the last. This

eans that when different grid points are assigned to different proces-

ors, some processors need to wait the solution given by other proces-

ors. In the CG, GMRES, Chebyshev and Jacobi methods, the solution at

tep ( 𝑛 + 1) is only dependent on the solution before step ( 𝑛 + 1) . When

he solution before step ( 𝑛 + 1) is known, the solution at different flow

egions can be assigned to different GPU cards to conduct the iteration

rom step 𝑛 to step ( 𝑛 + 1) simultaneously. Therefore, these algorithms

re friendly to parallel computing. 
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Fig. 1. Performance of different preconditioners shown in a lg 𝑟 - lb T chart. Each symbol with an index number represents a preconditioner listed in Table 1 . The 

dashed lines correspond to linear relationships between lg 𝑟 and lb T . The basic solver applies the (a) CG and (b) GMRES iteration methods. The tests are conducted 

in the context of the TGV flow for 1000 time steps. 
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Table 2 

Parameters of complete Poisson equation solvers. 

PES ID Basic solver PC 𝑁𝑃𝐶 subPC 𝑁𝑠𝑢𝑏𝑃𝐶 

01 CG Jacobi 5 - - 

02 CG Chebyshev 2 Jacobi 1 

03 GMRES(m) Jacobi 5 - - 

04 GMRES(m) Chebyshev 2 Jacobi 1 

Fig. 2. Performance of different Poisson equation solvers shown in a lg 𝑟 - lb 
𝑇 chart. Lines with different symbol patterns represent different Poisson equa- 

tion solvers listed in Table 2 . The numbers along with the symbols give the 

number of iteration steps per time step of the basic solvers. The tests are con- 

ducted in the context of the TGV flow for 1000 time steps. 
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Figure 1 compares the performance of different preconditioners. The

teration steps for both CG and GMRES methods are set to 30 in these

ests of the preconditioners. In the figures, each point corresponds to one

reconditioner, marked by the PC numbers listed in Table 1 . The hor-

zontal and vertical axis values of each point give the time-consuming

nd convergence indices of the preconditioner, respectively. The time-

onsuming index is defined as lb T , with 𝑇 being the averaging time

sed for solving a Poisson equation. The unit of 𝑇 is second. The con-

ergence index is defined as lg 𝑟 , where 𝑟 is the non-dimensionalized

esidual divergence of the velocity field after the correction step given

y Eq. (5) . The characteristic velocity and length scales for performing

he non-dimensionalization are given in Section 3 . It is desired that a

oisson equation solver can use shorter time to provide smaller residual

ivergence. In this regard, if a preconditioner is closer than other ones

o the left-bottom corner of the scatter plot shown in Fig. 1 , it should

e regarded as the optimal choice for constructing the Poisson equa-

ion solver in the problem under test. 

As shown in Fig. 1 (a), when the CG method is used as the basic solver,

ost preconditioners are located around a dashed line, expressed by

g 𝑟 = 0.8∗ lb 𝑇 - 10.3. This means that if we change the preconditioner

rom one to the other among these ones, we can expect to reduce the

esidual divergence by 100 . 8 ≈ 6 . 3 times by doubling the computational

ime. However, there is an exception, that is, PC 08, which locates to

he left-bottom of the dashed line. To construct this preconditioner, the

hebyshev iteration method is conducted for two steps, while the Ja-

obi method is conducted for one iteration as the sub-preconditioner of

he Chebyshev method. The observation from Fig. 1 (b) gives a similar

onclusion. Therefore, PC 08 is chosen as one of the preconditioners

or constructing the complete Poisson equation solver. Another precon-

itioner that deserves some attention is PC 03. Compared with PC 02,

t increases the iteration step of the Jacobi preconditioner from one to

ve, yielding significant reduction of the residual divergence when it is

ombined to the CG method. Therefore, PC 03 is also further considered

n the follow-up tests of the complete Poisson equation solvers. 

Thus far, we have chosen two preconditioners based on the tests

n the context of the TGV flow on 10403 grid points. Combining these

wo preconditioners with CG and GMRES methods as the basic solvers

ields four complete Poisson equation solvers, which are summarized

n Table 2 . These Poisson equation solvers are tested again in the con-

ext of the TGV flow by running the simulation for 1000 steps. In these

ests, we change the iteration step of the basic solvers from 30 to 150 to

urther examine the possibility of reducing the residual divergence by

ncreasing the iteration step of the basic solver. The GMRES method is

estarted every 30 iteration steps. The test results are depicted in a lg 𝑟 -
 v  

3 
b 𝑇 chart in Fig. 2 . The four lines with different symbol patterns repre-

ent four Poisson equation solvers. The numbers along with the symbols

ive the number of iteration steps 𝑁𝑖𝑡𝑒𝑟 of the basic solvers. 

As shown in Fig. 2 , increasing the iteration step of PES 01 does not

educe the residual divergence. Therefore PES 01 is not strongly rec-

mmended unless the number of grid points is not very large. For the

ther three solvers, the residual divergence shows a similar trend of

ecrease by increasing the number of iteration step. The residual di-

ergence given by PES 02 is smaller than that given by other Poisson
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Fig. 3. Diagram of communication and calculation scheme. 
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Fig. 4. Parallel efficiency in weak scalability tests. The scalability tests are con- 

ducted in four groups. the number of grid points allocated to each GPU card 

ranges from 1603 to 2243 . All tests are conducted in the context of TGV flow. 
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quation solvers by using the same computational time. It is also noticed

hat increasing the iteration step from 120 to 150 does not continue to

educe the residual divergence. Therefore, PES 02 with 120 iteration

teps is chosen to conduct the follow-up tests of the parallel efficiency

nd the acceleration ratio over a GPU/CPU platform. 

.3. Parallel programming 

The code is developed using Compute Unified Device Architecture

CUDA) [18] , a development environment and software architecture for

eneral-purpose computing using the C programming language with-

ut requiring application programming interface of graphics. Many par-

llel machines employ the GPU/CPU heterogeneous architecture and

he CUDA programming environment, containing both CPU and GPU

omponents working together. The CPU and its memory are called the

ost and host memory, respectively, and the GPU and its memory are

alled the device and device memory, respectively. The CPU control

nit and the cache unit are mainly responsible for performing complex

ogical processing and data communication between nodes, while the

PU mainly consists of processing units responsible for massive com-

uting tasks. The MPI-GPU hierarchical parallel programming frame-

ork is usually used for this hardward architecture. Each MPI process

s responsible for a subdomain and assigns computational tasks to the

orresponding device for fine-grained parallel computing on a grid ba-

is, while the information exchange tasks of the boundary grid during

omputation are executed at the host side via MPI. 

In our code, the domain data are stored on GPU entirely. While CUDA

treams provide an access to transfer data between multiple GPUs in par-

llel, it also adds complexity to the code and incurs runtime overheads.

ince the size of our dataset is relatively small, the CUDA streams are

ot used. It should be noted that there is no connection channel be-

ween the GPUs, which means data exchange must be bridged through

he host memory. Although this method may be slower than direct

PU-to-GPU communication, it is still sufficiently fast for our dataset

ize. 

In the present parallel strategy, the computational domain is divided

nto sub-domains with the same number of grid points by 3D parti-

ioning. This approach can effectively leverage the parallel computing

ower of GPUs. Each sub-domain is assigned to a GPU card to compute.

o enable communication between different sub-domains, we use MPI

rocesses that are responsible for data exchange and boundary grid in-

ormation transfer. Each MPI process is connected to a single GPU card

hat is responsible for computing its associated sub-domain, and data

xchange between MPI processes is conducted through the host mem-

ry. We also use the synchronous communication calculation scheme,

s shown in Fig. 3 . 
p  

n  

4 
.4. Parallel efficiency 

To further examine the parallel efficiency of the Poisson equa-

ion solver, we conduct four groups of weak scalability tests. In the weak

calability tests, the number of grid points allocated to each GPU card

anges from 1603 to 2243 in different groups. In each group of tests, the

umber of GPU cards varies from 1 to 83 . 
As shown in Fig. 4 , the weak scalability test shows that when the

umber of grid points allocated to each GPU card is larger than 2083 ,
he parallel efficiency exceeds 90% when 512 GPU cards are used to

onduct the parallel computing. From the parallel efficiency obtained

rom the weak scalability tests, it is evident that the computing load

llocated to each GPU card needs to be sufficiently large to maximize

he computing power of GPU. 

.5. Acceleration over a CPU platform 

To further evaluate the performance of the Poisson equation solver

n the GPU/CPU platform, we conduct a comparative test of the Poisson

quation solver on a pure CPU platform. The tests are also conducted in

he context of TGV flow on 1040 grid points. The test on the GPU/CPU

latform uses 53 GPU cards. The tests on CPU platform use different

umber of CPU cores, ranging from 53 to 203 . The values of averaging
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Fig. 5. Profiles of mean velocity in the lid-driven cavity flow. (a) Profiles of horizontal velocity 𝑢 along the vertical direction 𝑦 for 𝑥 = 0 . 5 , and (b) profiles of vertical 

velocity 𝑣 along the horizontal direction 𝑥 for 𝑦 = 0 . 5 . 

Fig. 6. Evolution history of (a) total kinetic energy and (b) dissipation rate obtained from the developed CFD solver using different number of grid points. The results 

of Van Rees et al. [20] are superimposed for validation. 

Table 3 

Acceleration ratio of a GPU/CPU platform over a pure CPU platform 

for running a case with 10403 grid points. 

Cores/Cards Time (s) Acceleration ratio 

CPU 5x5x5 431.65 1.00 

CPU 10x10x10 18.94 22.79 

CPU 20x20x20 5.28 81.71 

GPU 5x5x5 2.12 203.61 
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c

ime used for running the simulation are listed in Table 3 . It is seen that

hen the number of GPU cards of the GPU/CPU platform is identical

o the number of CPU cores of the pure CPU platform, the GPU/CPU

latform accelerates the simulation by approximately 203.6x. When the

umber of CPU cores increases to 203 = 8000 , the time cost on the CPU

latform is still approximately 5 . 28∕2 . 12 = 2 . 5 x that on the GPU/CPU

latform. This test evidently shows the feasibility of accelerating the

umerical simulations of incompressible flow with a large number of

rid points using a GPU/CPU platform. 

. Numerical examples 

Based on the above tests of the Poisson equation solvers, we choose

ES 02 to conduct the following tests of the complete CFD solver for

 

d  5 
ncompressible flow. The first test case is a two-dimensional lid-driven

ow in a square cavity. In this test case, the computational domain is a

quare cavity with [0 , 𝐿 ] × [0 , 𝐿 ] . The flow is driven by the lid at 𝑦 = 𝐿 at

 constant velocity 𝑈 . At the other three boundaries, i.e., 𝑥 = 0 , 𝑥 = 𝐿 ,

nd 𝑦 = 0 , a no slip condition is prescribed. Its convergence perfor-

ance is sufficient for this problem with a small number of grid points.

igure 5 compares the horizontal velocity 𝑢 ∕𝑈 at the vertical centerline

 = 0 . 5 𝐿 and vertical velocity 𝑣 ∕𝑈 at the horizontal centerline 𝑦 = 0 . 5 𝐿
f the square cavity with the previous results of Ghia et al. [19] . A good

greement is observed from the figures. This test shows the correctness

f the complete CFD solver. 

The second test is the TGV flow. The computational domain is a

ubic with [0 , 2π𝐿 ] 3 . Periodic boundary condition is applied in all three

irections. The initial velocity is given as 

𝑥 = 𝑢0 cos ( 𝑥 ∕𝐿 ) sin ( 𝑦 ∕𝐿 ) sin ( 𝑧 ∕𝐿 ) , (6)

𝑦 = − 𝑢0 sin ( 𝑥 ∕𝐿 ) cos ( 𝑦 ∕𝐿 ) sin ( 𝑧 ∕𝐿 ) , (7)

𝑧 = 0 , (8)

here 𝑢0 is the characteristic velocity scale. The Reynolds number is

𝑒 = 𝑢0 𝐿 ∕𝜈 = 1600 , where 𝜈 denotes the kinematic viscosity. The num-

er of grid points varies from 𝑁3 = 2563 to 10403 to test the resolution

onvergence performance. 

Figure 6 depicts the time history of the bulk kinetic energy 𝐸𝑘 and

issipation rate 𝜀 obtained from the present solver. Here, 𝐸 and 𝜀 are
𝑘 
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Fig. 7. Instantaneous vortex structure shown using the isosurface of 𝑄 = 7 . 7 at 

𝑡∗ = 9 of Taylor-Green vortex problem. 
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efined as 

𝑘 =
1 |Ω| ∫Ω 𝒖 ⋅ 𝒖 

2 
dΩ, (9) 

nd 

 = −
d 𝐸𝑘 

d 𝑡 
, (10)

espectively. The results of Van Rees et al. [20] using 5123 grid points

re superimposed for validation. As shown in Fig. 6 , both bulk kinetic

nergy 𝐸𝑘 and dissipation 𝜀 are underestimated when 2563 grid points

re used to conduct the simulaiton. As the number of grid points in-

reases to 5123 , the present results reach an agreement with previous

NS results. Figure 7 shows the instantaneous vortex structures visu-

lized by the isosurface of 𝑄 = 7 . 7 at 𝑡∗ = 9 . The distribution of vortex

tructures is in agreement with the result of DeBonis [21] . 

. Conclusion 

In this paper, we describe a developed CFD solver for GPU/CPU het-

rogeneous architecture parallel computing platform, with specific focus

n the choice of Poisson equation solvers. From a series of tests, the CG

asic solver incorporated with a Chebyshev preconditioner with a one-

tep Jacobi sub-preconditioner is recognized as a high-efficiency Poisson

quation solver. Its convergence performance is better than other solvers

nder test. Although the residual divergence given by the chosen Poisson

quation solver is slightly larger than that given by a multi-grid precon-

itioner, it is tolerable to the CFD solver. Therefore, it is chosen for its

implicity in implementation and its good performance on the parallel

fficiency. The weak-scalability tests show that the parallel efficiency

f the chosen solver on 512 GPU cards with respect to one GPU card is

igher than 90% when the number of grid points allocated to each GPU

ard is larger than 2083 . The present study shows a desirable future of

imulating incompressible flows on GPU/CPU platform. 

As a final remark of this paper, we note that the present study

ims to verify the feasibility of solving the incompressible equations on

PU/CPU platform to accelerate the simulation. This point is supported

y the test results shown in this paper. However, we fully recognize

hat the current solver only supports Cartesian grids and does not sup-

ort complex boundaries. This is a limitation of the current work, and

est of complex cases is assumed to be an important part of future work.
6 
esting the parallel efficiency on a larger number of grid points is also

esired in the future. 
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ppendix 

This appendix provides the algorithms tested in the present study. 

lgorithm A: preconditioned CG Method 

To solve a linear equation 𝐴𝑥 = 𝑏 with an initial guess 𝑥0 , the pre-

onditioned CG method [7,15,22] is given below. 

1. Initialization 

0 = 𝑏 − 𝐴𝑥0 , (A1)

𝑧0 = 𝑟0 , (A2) 

𝑝0 = 𝑧0 . (A3) 

. Iteration for 𝑘 = 0 , 1, 2,... 

𝑘 =
𝑟𝑇 
𝑘 
𝑧𝑘 

𝑝𝑇 
𝑘 
𝐴𝑝𝑘 

, (A4) 

𝑘 +1 = 𝑥𝑘 + 𝛼𝑘 𝑝𝑘 , (A5)

𝑘 +1 = 𝑟𝑘 − 𝛼𝑘 𝐴𝑝𝑘 . (A6)

f 𝑟𝑘 +1 is smaller than the tolerance, then stop the iteration. Otherwise,

ontinue the following calculations 

𝑧𝑘 +1 = 𝑟𝑘 +1 , (A7) 

𝑘 =
𝑧𝑇 
𝑘 +1 𝑟𝑘 +1 

𝑧𝑇 
𝑘 
𝑟𝑘 

, (A8) 

𝑘 +1 = 𝑧𝑘 +1 + 𝛽𝑘 +1 𝑝𝑘 . (A9)

he solution is given by 𝑥𝑘 +1 . Equations (A2) and (A7) are known as the

reconditioning, solved using the Jacobi or Chebyshev preconditioners

n the present study. 

lgorithm B: GMRES Method with precondition 

The preconditioned GMRES method [16,17] utilized in the present

tudy is given below. 

1. Initialization 

0 = 𝑏 − 𝐴𝑥0 , (B1)

𝑟0 
′ = 𝑟0 , (B2) 

𝑣1 
′ = 𝑟0 

′∕‖𝑟0 ′‖. (B3) 

https://doi.org/10.13039/501100001809
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. Iteration for 𝑗 = 1 , 2 , … , 𝑚, 

𝑖,𝑗 =
(
𝐴𝑣𝑗 

′, 𝑣𝑖 
′), 𝑖 = 1 , 2 , … , 𝑗, (B4)

̂𝑗+1 = 𝐴𝑣𝑗 
′ −

𝑗 ∑
𝑖 =1 

ℎ𝑖,𝑗 𝑣𝑖 , (B5)

�̂�𝑗+1 
′ = �̂�𝑗+1 , (B6) 

𝑗+1 ,𝑗 = ‖�̂�′
𝑗+1 ‖, 𝑣𝑗+1 = �̂�′

𝑗+1 ∕ℎ𝑗+1 ,𝑗 . (B7)

. Calculate the approximate solution 

𝑚 = 𝑥0 + 𝑉𝑚 𝑦𝑚 , where 𝑦𝑚 minimizes 𝐽 ( 𝑦) = ‖𝛽𝑒1 −𝐻 𝑚 𝑦 ‖. (B8)

. Restart 

Calculate the residual 

𝑚 = 𝑏 − 𝐴𝑥𝑚 . (B9)

f ||𝑟𝑚 || is smaller than the tolerance, then stop the algorithm. Other-

ise let 𝑥0 = 𝑥𝑚 and go to step 2. The solution is given by 𝑥 = 𝑥𝑚 . The

reconditioning given by Eqs. (B2) and (B6) is solved using Jacobi or

hebyshev preconditioners in the present study. 

lgorithm C: Chebyshev Method with sub-precondition 

In the present study, the Chebyshev method [16] is only used as a

reconditioner to solve Eqs. (A2) , (A7), (B2) , and (B6) . It is not used

s a basic solver to solve the Poisson equation. However, to express the

hebyshev iteration algorithm, we continue using the general form of a

inear equation 𝐴𝑥 = 𝑏 . The Chebyshev iteration method is given below.

1.Start: Select 𝑥0 and calculate 

0 = 𝑏 − 𝐴𝑥0 , (C1)

𝑟0 
′ = 𝑟0 , (C2)

1 =
𝛿

𝜃
, 𝜌0 =

1 
𝜎1 

, 𝑑0 =
1 
𝜃
𝑟0 

′. (C3)

he iteration parameters 𝛿 and 𝜃 are determined as 

=
𝜆1 − 𝜆𝑛 

2 
, 𝜃 =

𝜆1 + 𝜆𝑛 

2 
, (C4)

here 𝜆1 and 𝜆𝑛 are the maximum and minimum eigenvalues of ma-

rix 𝐴 , respectively. The eigenvalues of the matrix are obtained approx-

mately from a GMRES method with a Jacobi preconditioner [6] . The

MRES iteration is conducted for ten steps to obtain ten eigenvalues,

rom which the maximum and minimum are chosen. 

2.Iteration: For 𝑘 = 0 , 1 , … , 

𝑘 +1 = 𝑥𝑘 + 𝑑𝑘 , (C5)

𝑘 +1 = 𝑟𝑘 − 𝐴𝑑𝑘 . (C6)

f ||𝑟𝑘 +1 || is smaller than the tolerance, then stop the algorithm. Other-

ise, continue the following calculations 
7 
𝑟𝑘 +1 
′ = 𝑟𝑘 +1 , (C7) 

𝑘 +1 =
(
2 𝜎1 − 𝜌𝑘 

)−1 
, (C8) 

𝑘 +1 = 𝜌𝑘 +1 𝜌𝑘 𝑑𝑘 −
2 𝜌𝑘 +1 
𝛿

𝑟𝑘 +1 
′. (C9) 

quations (C.2) and (C.6) are solved by a Jacobi sub-preconditioner.

he solution is given by 𝑥𝑘 +1 . 
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