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e d i t o r - i n - c h e i f ’ s r e c o m m e n d a t i o n

The Maxey-Riley equation, which describes the force and motion of a single small-Reynolds-number

spherical particle in an unsteady and non-uniform flow field, forms the basis for the study of particu-

late two-phase flows. The equation was published by Martin R. Maxey and James J. Riley in Physics of

Fluids (26(4), 883-889) in 1983 and has had an important impact on the following research (as of August

29, 2022, the paper has been cited by 2250 times, including 129 citations for year 2021).

However, as early as 1956-1957, when Prof. Shu-tang Tsai worked on the sediment settlement in rivers

under the guidance of Prof. Pei-Yuan Chou, he conducted in-depth research on the basic hydrodynamic

problem related to the force of spherical particles in the flow field, and published a series of results

in the Acta Physica Sinica in Chinese, including the non-uniform sedimentation motion of particles in

hydrostatic water (1956, 12(5), 409-418), the force on particles in arbitrary flow field (1957, 13(5), 388-

398, henceforth referred as 1957a), and sediment settlement in laminar flows (1957, 13(5), 399-408).

Among them, the title of the 1957a paper is “Sedimentation motion of sand particles in moving water (I)

The resistance on a small sphere moving in non-uniform flow”. In this paper, the equation governing the

force and motion of a single small spherical particle under general flow conditions was derived, and is

essentially identical to what is now known as the Maxey-Riley equation.

Since Mr. Tsai’s paper was published in Chinese, it has long been unknown to the international aca-

demic community. In this issue, we publish the English version of the 1957a paper, which was translated

by Prof. Haitao Xu from Tsinghua University, to memorize Prof. Shu-tang Tsai and let more people aware

of his pioneering work in the field of particulate two-phase flows.

a b s t r a c t

In hydraulics, when we deal with the problem of sand particles moving relative to the surrounding wa-

ter, Stokes’ formula of resistance has usually been used to render the velocity of sedimentation of the

particles. But such an approach has not been proved rigorously, and its accuracy must be carefully con-

sidered. In this paper, we discuss the problem of a sphere moving in a non-uniform flow field, on the

basis of the fundamental theory of hydrodynamics. We introduce two assumptions: i) the diameter of

the sphere is much smaller than the linear dimension of the flow field, and ii) the velocity of the sphere

relative to the surrounding water is very small. Using these two assumptions, we solve the linearized

Navier-Stokes equations and equations of continuity by the method of Laplace transform, and finally we

obtain a formula for the resistance acting on a sphere moving in a non-uniform flow field.
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1. Introduction

In the study of river-bed dynamics [1], when dealing with the

relative motion between sand particles and the surrounding water,

Stokes’ drag formula is usually used to determine the relative ve-

locities of the sand particles in water. The validity of this approach,

however, has not been rigorously established and thus must be

carefully discussed. In two previous articles [2], we discussed the

sedimentation motion of sand particles in quiescent water, and ob-

tained the correction to Stokes’ formula for calculating the resis-

tant forces on sand particles under this situation. To further study

the sedimentation of sand particles in moving water, in the present

paper we start from the fundamental theory of hydrodynamics and

analyze the resistance forces on a sphere moving in a general flow

field. We obtain a formula for the total resistance force. With the

help of that, we will be able to study the relative velocities be-

tween sand particles and the surrounding water, and to understand

the sedimentation process of sand particles in rivers.

2. Derivation of the resistance formula

2.1. Decomposition of the velocity and the drag force

Consider a flow field consisting of a viscous fluid in space, with

proper initial and boundary conditions on the relevant hydrody-

namic variables such as velocity and pressure. Suppose we now

put a sphere with radius a into the flow field, while keeping the

initial and the boundary conditions of the flow in regions far away

from the sphere unchanged, then a new flow state is established,

which we would like to analyze. We take a coordinate system mov-

ing with the sphere, with the origin on the center of the sphere.

We use Cartesian tensors to describe the motion. We denote the

velocity of the sphere as vi and the rotation tensor of the sphere

as ωi j . Before the sphere is put into the flow field, the momentum

equation and the continuity equation of the fluid are, respectively,

∂u0
i

∂t
+ u0

α

∂u0
i

∂xα
+ dvi

dt
= − 1

ρ

∂ p0

∂xi
+ ν∇2u0

i − gi (1)

and

∂u0
i

∂xi
= 0, (2)

where u0
i
is the velocity of the fluid relative to the moving coordi-

nates when the sphere is not in the flow field, p0 is the fluid pres-

sure, ρ is the fluid density, ν is the kinematic viscosity of fluid, and

gi is gravitational acceleration. The whole flow field changes after

the sphere is introduced into the flow. Let ui denote the velocity of

the fluid relative to the moving coordinates after introducing the

sphere to the flow field and p denote the corresponding pressure,

then the momentum equation and the continuity equation for that

flow field are, respectively,

∂ui

∂t
+ uα

∂ui

∂xα
+ dvi

dt
= − 1

ρ

∂ p

∂xi
+ ν∇2ui − gi (3)

and

∂ui

∂xi
= 0. (4)

If we define Wi = ui − u0
i
and � = p− p0, the equations for Wi

and � can be obtained by subtracting Eq. (3) from Eqs. (1) and

(4) from Eq. (2), respectively. The results are

∂Wi

∂t
+ uα

∂Wi

∂xα
+Wα

∂u0
i

∂xα
= − 1

ρ

∂�

∂xi
+ ν∇2Wi (5)

and

∂Wi

∂xi
= 0. (6)

Assuming that the velocity of the fluid relative to the sphere center

is very small, we can neglect the nonlinear terms in Eq. (5), which

then becomes

∂Wi

∂t
= − 1

ρ

∂�

∂xi
+ ν∇2Wi. (7)

Next we discuss the initial condition and the boundary condi-

tions that Wi needs to satisfy. For the initial condition, we assume

that right after introducing the sphere to the flow field, the veloc-

ity of the fluid outside the sphere remains the same as that in the

original flow field without the sphere, i.e., at any position x with

|x| > a,

Wi = 0 at t = 0. (8)

For the boundary conditions, we first note that far from the sphere,

the velocity disturbance caused by the sphere should vanish, which

means that

Wi = 0 at |x| = ∞. (9)

We also note that on the surface of the sphere, because the fluid

is viscous, the fluid velocity must be the same as the rotational

velocity of the surface, which gives

ui = ωi jx j at |x| = a, (10)

which could be written as

Wi = ωijx j − u0
i at |x| = a. (11)

We now expand the undisturbed velocity field u0
i
at the origin

of the moving coordinate system as

u0
i = αi + αi jx j + αi jkx jxk + O

(
a3

L3

)
,

in which αi, αi j , αi jk are all functions of time t , L is the linear

length scale of the flow field, and O
(
a3/L3

)
represents the sum of

all terms with orders above or equal to
(
a3/L3

)
. Because the radius

of the sphere a is much smaller than the length scale of the flow

field, we neglect all terms of order above
(
a2/L2

)
and simplify the

expansion to

u0
i = αi + αi jx j + αi jkx jxk. (12)

Due to the continuity Eq. (2), αi j and αi jk must satisfy

α j j = 0 and α j jk = 0. (13)

In addition, u0
i
is the solution of the momentum Eq. (1), thus αi,

αi j , and αi jk must satisfy other constraints, which we shall explore

later. Substituting Eq. (12) into Eq. (11), we may write the final

form of the boundary condition on the surface of the sphere as

Wi = −αi + (ωi j − αi j)x j − αi jkx jxk. (14)

In summary, the problem is transformed into solving Eqs. (6) and

(7) under the initial condition Eq. (8) and the boundary conditions

Eqs. (9) and (14).

In order to move forward, we take advantage of the linearity of

the equations and decompose the velocity field Wi into three parts

Wi = u′
i + u′′

i + u′′′
i , (15)

with each of the three parts separately satisfying the following

equations and initial and boundary conditions:

1. Equations and conditions for u′
i

The governing equations for u′
i
are

∂u′
i

∂t
= − 1

ρ

∂ p′
∂xi

+ ν∇2u′
i, (16)

and

∂u′
i

∂xi
= 0, (17)

2
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where p′ is the pressure corresponding to u′
i
.

The initial condition for u′
i
is

u′
i = 0 when t = 0. (18)

The boundary conditions for u′
i
are

u′
i
= 0 at |x| = ∞

u′
i
= −αi at |x| = a

}
(19)

2. Equations and conditions for u′′
i

The equations for u′′
i
are

∂u′′
i

∂t
= − 1

ρ

∂ p′′
∂xi

+ ν∇2u′′
i , (20)

and

∂u′′
i

∂xi
= 0, (21)

where p′′ is the pressure corresponding to u′′
i
.

The initial condition for u′′
i
is

u′′
i = 0 when t = 0. (22)

The boundary conditions for u′′
i
are

u′′
i

= 0 at |x| = ∞,

u′′
i

= (ωi j − αi j)x j at |x| = a.

}
(23)

3. Equations and conditions for u′′′
i

The equations for u′′′
i

are

∂u′′′
i

∂t
= − 1

ρ

∂ p′′′
∂xi

+ ν∇2u′′′
i , (24)

and

∂u′′′
i

∂xi
= 0, (25)

where p′′′ is the pressure corresponding to u′′′
i
.

The initial condition for u′′′
i

is

u′′′
i = 0 when t = 0. (26)

The boundary conditions for u′′′
i

are

u′′′
i

= 0 at |x| = ∞,

u′′′
i

= −αi jkx jxk at |x| = a.

}
(27)

Let fi denote the total force exerted by the fluid on the sphere,

which can be written in terms of the fluid stress as

fi =
‹

S

τiα
xα

a
dS, (28)

in which
‚

S dS represents integration over the surface of the

sphere and τiα is the fluid stress on the surface of the sphere,

which has the form

τiα = μ

(
∂ui

∂xα
+ ∂uα

∂xi

)
− pδiα (29)

with μ the dynamic viscosity coefficient of the fluid.

The total force acting on the sphere fi can be decomposed into

two parts: fi = f 0
i

+ ϕi, in which f 0
i

corresponds to the velocity

field u0
i
and ϕi corresponds to the velocity field Wi. Thus the ex-

pressions of f 0
i
and ϕi are

f 0i = /Sτ
0
iα

xα

a
dS, (30)

where

τ 0
iα = μ

(
∂u0

i

∂xα
+ ∂u0

α

∂xi

)
− p0δiα, (31)

and

ϕi = /S�iα
xα

a
dS, (32)

where

�iα = μ

(
∂Wi

∂xα
+ ∂Wα

∂xi

)
− �δiα. (33)

Similarly, we can further divide ϕi into three contributions: ϕi =
f ′
i
+ f ′′

i
+ f ′′′

i
, in which f ′

i
comes from u′

i
and can be calculated as

f ’i = /Sτ
’
iα

xα

a
dS, (34)

where

τ ′
iα = μ

(
∂u′

i

∂xα
+ ∂u′

α

∂xi

)
− p′δiα, (35)

f ′′
i

corresponds to u′′
i
:

f ’’i = /Sτ
’’
iα

xα

a
dS, (36)

where

τ ′′
iα = μ

(
∂u′′

i

∂xα
+ ∂u′′

α

∂xi

)
− p′′δiα, (37)

and f ′′′
i

corresponds to u′′′
i
:

f ’’’i = /Sτ
’’’
iα

xα

a
dS, (38)

where

τ ′′′
iα = μ

(
∂u′′′

i

∂xα
+ ∂u′′′

α

∂xi

)
− p′′′δiα. (39)

2.2. Calculation of f 0
i
, f ′

i
and f ′′

i

To obtain an explicit expression for the contribution f 0
i

to the

total resistance, we use Gauss’ divergence theorem to transform

Eq. (30) into

f 0i =
˚

V

∂τ 0
iα

∂xα
dV =

˚
V

(
μ∇2u0

i − ∂ p0

∂xi

)
dV, (40)

in which
˝

V dV represents integration over the volume occupied

by the sphere. With the help of Eq. (1), Eq. (40) becomes

f 0i = ρ

˚
V

(
∂u0

i

∂t
+ u0

α

∂u0
i

∂xα
+ dvi

dt
+ gi

)
dV. (41)

Because the radius of the sphere is very small, the integral can be

evaluated by replacing the function in the integrand with its value

at the origin of coordinate system, or the center of the sphere,

which introduces an error of the order higher than
(
a3/L3

)
and

is thus acceptable. The result is

f 0i = 4

3
πa3ρ

[(
∂u0

i

∂t
+ u0

α

∂u0
i

∂xα

)
r=0

+ dvi

dt
+ gi

]

= 4

3
πa3ρ

(
dαi

dt
+ dvi

dt
+ gi

)
, (42)

in which ()r=0 means the value evaluated at the origin or the cen-

ter of the sphere.

To evaluate the contribution f ′
i
to the drag force, we note that

it follows directly from the work by Boussinesq [3,4] as

f ′i = 6πμa

(
αi +

a√
πν

ˆ t

0

dαi

dτ√
t − τ

dτ

)
+ 2

3
πa3ρ

dαi

dt
. (43)

3
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Table 1

Laplace transform pairs.

Original function Laplace transformation

t s

u′′′
i

Ui

−αi jk βi jk

p′′′ P

τ ′′′
i j

Ti j

f ′′′
i

Fi

We now turn to f ′′
i
. We note that Eqs. (20) and (21), to-

gether with the initial condition Eq. (22) and boundary conditions

Eq. (23), indicate that u′′
i
must be an odd function of x j , and p′′ is

an even function of x j . Therefore, the integrand in Eq. (36) is an

odd function of x j . Hence the integration over the entire surface of

the sphere is identically zero, which means that f ′′
i
, the contribu-

tion corresponding to velocity u′′
i
and pressure p′′, is 0.

2.3. Calculation of f ′′′
i

To evaluate the force f ′′′
i
, instead of solving Eqs. (24) and

(25) directly, we resort to the method of Laplace transform. For

a given function ϕ(t), its Laplace transform �(s) is given by

�(s) =
ˆ ∞

0

e−stϕ(t)dt.

In Table 1, we list the symbols representing the pairs of original

functions and their Laplace transforms that we will use later.

Taking the Laplace transform of Eqs. (24) and (25), we obtain

sUi = − 1

ρ

∂P

∂xi
+ ν∇2Ui (44)

and

∂Ui

∂xi
= 0. (45)

The boundary conditions for the Laplace-transformed function are

Ui = 0 at |x| = ∞
Ui = βi jkx jxk at |x| = a.

}
(46)

The continuity Eq. (45) requires that βi jk must satisfy

βi j j = 0. (47)

The initial condition does not appear explicitly here since the orig-

inal initial condition Eq. (26) has been used in the Laplace trans-

formation and thus is already included in Eqs. (44) and (45).

Before solving Eqs. (44) and (45), let’s consider a third-order

tensor Wimn that satisfies

sWimn = − 1

ρ

∂Pmn

∂xi
+ ν∇2Wimn (48)

and

∂

∂xi
Wimm = 0, (49)

with the boundary conditions

Wimn = 0 at |x| = ∞
Wimn = βimn at |x| = a.

}
(50)

To solve Eqs. (48) and (49), we let R denote the distance of

a point in space to the origin of the coordinate system, i.e., R =
|x|, and introduce a new variable η = R2. We seek solutions of the

following forms:

Wimn = f (η)βlmnxixl + g(η)βimn (51)

and

1

ρ
Pmn = Aη− 3

2 βlmnxl, (52)

in which A is a constant to be determined, f (η) and g(η) are func-

tions of η only. For simplicity in writing, later we will use f and g

to denote f (η) and g(η), and use a superscript “′” on the upper-

right corner to denote differentiation with respect to η once. Sub-

stituting Eq. (51) into Eq. (49), we obtain

∂Wimn

∂xi
= (2η f ′ + 4 f + 2g′)βlmnxl = 0,

which leads to

2η f ′ + 4 f + 2g′ = 0. (53)

Differentiating Eqs. (51) and (50) gives

∇2Wimn =(4η f ′′ + 14 f ′)β jmnxix j + (2 f + 2ηg′′ + 6g′)βimn

and

1

ρ

∂Pmn

∂xi
= −3Aη− 5

2 β jmnxix j + Aη− 3
2 βimn,

which, upon substituting into Eq. (48), lead to the following two

equations:

s f = 3Aη− 5
2 + ν(4η f ′′ + 14 f ′) (54)

and

sg = −Aη− 3
2 + ν

(
2 f + 2ηg’’ + 6g’

)
. (55)

Note that among Eqs. (53), (54) and (55), only two are inde-

pendent and the third can be obtained from the other two. Here

we choose to solve Eqs. (53) and (54). For easy writing, we

use m to denote
√

s
ν . Upon changing the independent variable in

Eqs. (53) and (54) from η to R, we obtain

d2 f

dR2
+ 6

R

d f

dR
− m2 f + 3A

ν

1

R5
= 0

1

R

dg

dR
= −4 f − R

d f

dR
,

⎫⎪⎪⎬
⎪⎪⎭

(56)

which should be solved with proper boundary conditions. Far away

from the sphere, Wimn vanishes, hence

f (∞) = g(∞) = 0. (57)

On the surface of the sphere, Wimn = βimn, which gives

f (a2) = 0 and g(a2) = 1. (58)

Solving Eq. (56) with the boundary conditions Eqs. (57) and (58),

we obtain

f = − 9a

2m2R5
e−m(R−a)

(
1 + mR + 1

3
m2R2

)
+ 9a

2m2R5

(
1 + ma + 1

3
m2a2

)
,

g = 3a

2m2R3
e−m(R−a)(1 + mR + m2R2)

− 3a

2m2R3

(
1 + ma + 1

3
m2a2

)
,

A

ν
= 3

2
a

(
1 + ma + 1

3
m2a2

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(59)

4
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Now we are ready to solve Eqs. (44) and (45). We first define

the following pairs of functions

(Ui)I = ∂2

∂xm∂xn
Wimn = 4 f ′′βlmnxixlxmxn

+4 f ′βlimxlxm + 2 f ′βlmmxixl

+4g′′βimnxmxn + 2g′βimm,

(P)I = ∂2

∂xm∂xn
Pmn =

15ρAη
−
7

2βlmnxmxn − 3ρAη
−
5

2βlmmxl,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(60)

(Ui)II = ∂2

∂xα∂xα

(
∂2

∂xm∂xn
Wimn

)
=⎛

⎝4m2 f ′′ − 105A

ν
η

−
9

2

⎞
⎠βlmnxixlxmxn

+

⎛
⎝4m2 f ′ + 30A

ν
η

−
7

2

⎞
⎠βlimxlxm

+

⎛
⎝2m2 f ′ + 15A

ν
η

−
7

2

⎞
⎠βlmmxlxi

+

⎛
⎝4m2g′′ + 15A

ν
η

−
7

2

⎞
⎠βilmxlxm

+

⎛
⎝2m2g′ − 3A

ν
η

−
5

2

⎞
⎠βimm,

(P)II = ∂2

∂xα∂xα

(
∂2Pmn

∂xm∂xn

)
= 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(61)

(Ui)III = Wimm = fβlmmxixl + gβimm,

(P)III = Pmm = ρAη
−
3

2 xlβlmm,

⎫⎪⎬
⎪⎭ (62)

(Ui)IV = ∂2

∂xα∂xα
Wimn =

⎛
⎝m2 f − 3A

ν
η

−
5

2

⎞
⎠βlmmxixl

+

⎛
⎝m2 g+ A

ν
η

−
3

2

⎞
⎠βimm,

(P)IV = ∂2

∂xα∂xα
Pmn = 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(63)

and

(Ui)V = hβilmxlxm − hβlimxlxm + kβimm,

(P)V = 0,

}
(64)

in which

h = 1

R5
e−m(R−a)

(
1 + mR + 1

3
m2R2

)
,

k = −
(

1

3R3
+ m

3R2

)
e−m(R−a).

⎫⎪⎪⎬
⎪⎪⎭

(65)

Substituting the pairs of Ui and P given by Eqs. (60)-(64) into

Eqs. (44) and (45), we can show that every pair of Ui and P satisfy

Eqs. (44) and (45) simultaneously. Therefore, to find the solution

of Eqs. (44) and (45) with the boundary conditions Eq. (46), we

let

Ui = C1(Ui)I +C2(Ui)II +C3(Ui)III +C4(Ui)IV +C5(Ui)V ,

P = C1(P)I +C3(P)III,

}
(66)

in which C1, C2, C3, C4 and C5 are constants to be determined. Sub-

stituting Eq. (66) into the boundary conditions Eq. (46), after

some lengthy but straightforward calculation we obtain

C1 = m2a7

18

ν

A

1 + ma + 1

10
m2a2

1 + ma + 1

3
m2a2

+ 7

18

a4

1 + ma + 1

3
m2a2

,

C2 = −νa7

18A

1 + ma + 1

10
m2a2

1 + ma + 1

3
m2a2

,

C3 = a2

3

1 + ma + 1

5
m2a2

1 + ma + 1

3
m2a2

,

C4 = − 1

18

a4

1 + ma + 1

3
m2a2

,

C5 = −1

2

a5

1 + ma + 1

3
m2a2

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(67)

Putting these together, Ui and P are given by

Ui = (2D2 f
′′ − 35D1R

−9)βlmnxixlxmxn
+(2D2 f

′ + 10D1R
−7 − D3 h)βlimxlxm

+(2D2g
′′ + 5D1R

−7 + D3 h)βilmxlxm
+(D2 f

′ + 5D1R
−7 + D4 f

−3D5R
−5)βlmmxixl

+(D2g
′ − D1R

−5 + D4 g

+D5R
−3 + D3k)βimm,

P = ρ(15C1AR
−7βlmnxlxmxn − 3C1AR

−5βlmmxl
+ C3AR

−3βlmmxl ),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(68)

in which

D1 = −a7

6

1 + ma + 1

10
m2a2

1 + ma + 1

3
m2a2

,

D2 = 7

9

a4

1 + ma + 1

3
m2a2

,

D3 = −1

2

a5

1 + ma + 1

3
m2a2

,

D4 = a2

3

1 + ma + 1

30
m2a2

1 + ma + 1

3
m2a2

,

D5 = − 1

12
a5.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(69)
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The Laplace-transformed function Fi corresponding to f ′′′
i

is

Fi = 1

a

‹
S

Ti jx jdS, (70)

in which

Ti j = μ

(
∂Ui

∂x j

+ ∂Uj

∂xi

)
− Pδi j. (71)

Therefore, substituting Eq. (68) into Eqs. (70) and (71), after some

heavy but manageable manipulation we finally obtain

Fi = − 2πμa3βimm

(
1 + ma + 1

15
m2a2

− 4

15

m2a2

1 + ma + 1
3
m2a2

)
. (72)

If terms of order above a3 are neglected, it simplifies to

Fi = −2πμa3βimm, (73)

which, by the inverse Laplace transform, gives the contribution f ′′′
i

to the total force simply as

f ′′′i = 2πμa3αimm = πμa3
(∇2u0

i

)
r=0

. (74)

2.4. Total drag on a sphere moving in a flow field

Summing up the contributions f 0
i
, f ′

i
and f ′′′

i
given by

Eqs. (42), (43) and (74), we obtain the total flow resistance fi on

the sphere as

fi = f 0i + f ′i + f ′′′i = 4

3
πa3ρ

(
dαi

dt
+ dvi

dt
+ gi

)

+ 6πμa

(
αi +

a√
πν

ˆ t

0

dαi

dτ√
t − τ

dτ

)

+ 2

3
πa3ρ

dαi

dt
+ 2πμa3αimm. (75)

3. Discussion

In the derivation above, we assumed that the velocity of the

fluid relative to the center of the sphere is small, which allowed

us to neglect the nonlinear terms in the momentum equations. For

sand particles suspended in real rivers, this assumption is accept-

able. For example, the average diameter of suspending sand par-

ticles in the Yellow river is around 0.03 mm. The sedimentation

velocity of a sand particle of such size in water due to gravity is

very small. Moreover, the inertial effects of such fine particles are

also small, thus the particles shall not fall much behind the water

flow due to the inertial effects. Taken these two reasons together,

the nonlinear terms can be neglected. On the other hand, for sand

particles moving along the river bed, which are usually of diame-

ters above 0.2 mm, their relative velocities with respect to the wa-

ter are much larger, thus the assumption we made above is not

applicable.

In the discussion, we also assumed that the length scale of the

flow is much larger than the diameter of the sand particles. In

rivers, the length scale of the flow is roughly of the same order

of the water depth, which is typically a few centimeters to a few

meters, indeed much larger than 0.03 mm.

In the derivation, we applied the initial condition Wi = 0, which,

strictly speaking, is rather arbitrary. On the other hand, what we

are interested in is not the exact flow field at early times, but the

flow at larger t . For the viscous flow around the sphere, the in-

fluence of the initial condition disappears quickly as t increases.

Therefore, from a practical viewpoint, the arbitrary choice of the

initial condition Wi = 0 has negligible effects.
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