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a b s t r a c t 

Independent component analysis (ICA) is used to study the multiscale localised modes of streamwise ve- 
locity fluctuations in turbulent channel flows. ICA aims to decompose signals into independent modes, 
which may induce spatially localised objects. The height and size are defined to quantify the spatial po- 
sition and extension of these ICA modes, respectively. In contrast to spatially extended proper orthogonal 
decomposition (POD) modes, ICA modes are typically localised in space, and the energy of some modes is 
distributed across the near-wall region. The sizes of ICA modes are multiscale and are approximately pro- 
portional to their heights. ICA modes can also help to reconstruct the statistics of turbulence, particularly 
the third-order moment of velocity fluctuations, which is related to the strongest Reynolds shear-stress- 
producing events. The results reported in this paper indicate that the ICA method may connect statistical 
descriptions and structural descriptions of turbulence. 

© 2022 The Authors. Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and 
Applied Mechanics. 

This is an open access article under the CC BY-NC-ND license 
( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

Turbulence is composed of flow structures at different scales. 
Spatially localised structures have important applications in turbu- 
lent cascades [1] , wall turbulence dynamics [2,3] and aerodynamic 
noise [4] . However, the structure of turbulence still lacks a com- 
monly accepted definition, and extracting spatially localised struc- 
tures at different scales from flow data remains challenging [5] . 

One type of flow structure analysis method is vortex identi- 
fication criteria, such as the Q criterion [6] , � criterion [7] , λ2 
criterion [8] , etc. Most of these methods are based on local flow 
kinematics implied by the velocity gradient tensor and can iden- 
tify spatially localised structures, such as vortex worms in isotropic 
turbulence [9] and hairpin vortices in wall turbulence [10] . 

Others type of flow structure analysis method includes Fourier 
analysis, proper orthogonal decomposition (POD) [11] , and wavelet 
analysis [12] , which decompose a flow into modes at different 
scales. Fourier analysis is used in homogeneous turbulence, and 
POD is a generalization of Fourier analysis in inhomogeneous tur- 
bulence [13] . Both Fourier analysis and POD consider the energy 
and Reynolds stress of a flow globally so that their modes are spa- 
tially extended. Wavelet analysis uses localized basis functions and 
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can estimate the multiscale characteristics of the flow at different 
spatial positions [14] . 

In addition, Schmid [15] proposed dynamic mode decompo- 
sition (DMD) to capture the dynamics of flow fields. The DMD 
method can extract modes with different temporal properties (i.e., 
frequencies and growth rates). Thus, the DMD method can effec- 
tively analyse flows that contain multiple instability mechanisms. 

Recently, the empirical mode decomposition (EMD) method 
[16] has been applied in turbulence research. Agostini and 
Leschziner [ 17,18 ] used bidimensional EMD (BEMD) to analyse the 
effect of large-scale structures on near-wall turbulence. EMD par- 
titions the instantaneous flow into modes (IMFs, intrinsic mode 
functions) without relying on a priori basis functions; thus, EMD 
is an adaptive multiscale analysis method. 

In addition to these methods, independent component analysis 
(ICA) has been developed to decompose mixed signals into inde- 
pendent components and is widely used in data analysis, such as 
predicting stock market prices [19] and analyzing RNA-sequencing 
experiments [20] . Carassale [21] used ICA in turbulent flows and 
described the difference between POD and ICA modes. 

In this paper, we use ICA to analyse the localised multiscale 
modes in turbulent channel flows. We have two motivations for 
using ICA to analyse turbulence data. On one hand, independence 
may lead to the spatial locality of modes. If two structures are spa- 
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tially localised (i.e., their intersection in space is relatively small), 
then they are more likely to be independent. In contrast, if two 
structures are spatially extended (i.e., their intersection in space 
is relatively large), then they are less likely to be independent. 
Jiménez [5] reported a similar explanation while considering the 
turbulent boundary layer over a wing. Therefore, spatial locality 
may be achieved through independence of modes. On the other 
hand, independence itself is also important to describe the statis- 
tical properties of turbulence. Mouri [22] described the kinetic en- 
ergy, Reynolds stress and two-point correlations in wall turbulence 
by assuming the randomness and independence of the attached 
eddies. Therefore, ICA may be able to connect statistical descrip- 
tions and structural descriptions of turbulence. 

Considering an observed multidimensional variable o , ICA as- 
sumes that the variable o can be written as [23] : 

o = As , (1) 

where o = [ o 1 , o 2 , · · · , o n ] T is the observed signal, s = 
[ s 1 , s 2 , · · · , s n ] T is a set of mutually independent source sig- 
nals, and A is a linear mixing matrix, indicating that the observed 
signals o i are linear mixtures of independent source signals s . The 
task of ICA is to find the maximum independent set of source 
signals s and the mixing matrix A for the given observed signals o . 
Because both s and A are unknown, we can arbitrarily change the 
magnitudes and the order of source signals and suitably change 
the corresponding columns of A to generate the same observed 
signals. Thus, there are ambiguities in the magnitudes and the 
order of the independent components [23] . To eliminate these am- 
biguities, we assume that the source signals exhibit unit variances 
[24] and thus arrange the source signals by their heights. 

In the ICA model, mutual information is used to measure the 
dependence between random variables. The mutual information 
between n random variables s i ( i = 1 , 2 , · · · , n ) is defined as: 

I( s 1 , s 2 , · · · , s n ) = 
n ∑ 

i =1 
H( s i ) − H(s ) , (2) 

where H(·) is the differential entropy of the random variable: 

H(s ) = −
∫ 

p(s ) ln p(s )d s , (3) 

H( s i ) = −
∫ 

p( s i ) ln p( s i )d s i . (4) 

where p( s i ) is the probability density function (PDF) of random 
variable s i , and p(s ) is the PDF of random vector s . Because p(s ) 
is an n -dimensional joint PDF, H(s ) is difficult to estimate directly. 
Some pre-processing techniques, such as the whitening transfor- 
mation, can simplify the estimation of the differential entropy 
H(s ) . Mutual information is always nonnegative and equals zero 
if and only if the variables s i are mutually independent. Therefore, 
mutual information is a natural measure for independence, and the 
goal of ICA is to minimize the mutual information between the 
components (i.e., maximize the independence between the source 
signals). 

There are various ICA algorithms, such as Infomax [25] , FastICA 
[26] , and MISEP [27] . In this study, we use the FastICA algorithm, 
which is described in detail by Hyvärinen and Oja [24] and is im- 
plemented in Scikit-learn [28] . The Infomax algorithm is also used, 
and its results are similar to those of FastICA and thus not re- 
ported. 

Considering the n -dimensional zero-mean vector o , its covari- 
ance matrix is: 

R = 〈 o o T 〉 , (5) 

where the angular bracket 〈·〉 denotes the mathematical expecta- 
tion, and the superscript “T” indicates the transpose. According to 

POD, o can be represented by the modal expansion: 

o = 
n ∑ 

i =1 
c i q i , (6) 

where c i ( i = 1 , 2 , · · · , n ) are the modal coefficients and the vectors 
q i ( i = 1 , 2 , · · · , n ) are the POD modes that are the eigenvectors of 
the covariance matrix: 

R q i = λi q i . (7) 

Among all available linear decompositions, POD is the most ef- 
ficient in the sense of containing kinetic energy for a given num- 
ber of modes if o refers to the velocity. Thus, POD is often used 
to derive reduced-order models. POD modes are orthonormal (i.e. 
q T 

i q j = δi j ), and the POD coefficients are uncorrelated: 

〈 c i c j 〉 = 0 for i � = j . (8) 

According to Eq. (1) , the ICA model can be rewritten as: 

o = 
n ∑ 

i =1 
s i g i , (9) 

where g i is the i th column vector of the mixing matrix A . The 
source signal s i is the coefficient of the ICA mode g i . Due to the 
independence of s i , we have: 

〈 s i s j 〉 = 〈 s i 〉〈 s j 〉 = 0 for i � = j , (10) 

Thus, the independent variables are uncorrelated. However, uncor- 
relatedness does not imply independence. Thus, the ICA modes are 
more advantageous in reconstructing higher-order statistics. Con- 
sidering the third-order moment as an example, we have 〈 s 2 

i s j 〉 = 
0 ( i � = j) for the ICA coefficients, but there is no guarantee that 
〈 c 2 

i c j 〉 = 0 ( i � = j) for the POD coefficients. 
Considering the wall-normal profile of streamwise velocity fluc- 

tuations u (y ; x, z, t) in the turbulent channel flows, x , y and z de- 
note the coordinates in the streamwise, wall-normal and span- 
wise directions, respectively; and t denotes the time. We only 
discuss the wall-normal modes in this paper and not the three- 
dimensional modes because the ICA model of three-dimensional 
modes is difficult to formulate into a well-defined and solvable 
form. The flow structures in turbulent channels can move ran- 
domly in the streamwise and spanwise directions together with 
the downstream convection. If the three-dimensional ICA modes 
characterize these randomly moving structures, the ICA model can 
be expressed as: 

u (y ; x, z, t) = 
n ∑ 

i =1 
s i (t) u ICA 

i ( x − x c (t) , y, z − z c (t) ) , (11) 

where u ICA 
i ( x − x c (t) , y, z − z c (t) ) is the ICA mode centred at x c (t) 

and z c (t) in the streamwise and spanwise directions, respectively; 
and x c (t) and z c (t) depend on t because the spatially localised 
structures in turbulent channels should be moving. The ICA model 
defined by Eq. (11) is difficult to solve, particularly because the 
properties of x c (t) and z c (t) are unknown. If we simply write the 
ICA model as: 

u (y ; x, z, t) = 
n ∑ 

i =1 
s i (t) u ICA 

i (x, y, z) , (12) 

then the ICA modes u ICA 
i (x, y, z) are spatially fixed, which is not 

reasonable for structures in turbulent channels. 
There are n grid points from the wall to the centre of the chan- 

nel in the wall-normal direction, and the coordinates of these grid 
points are y j , where j = 1 , 2 , · · · , n . We represent u (y ; x, z, t) as a 
mixture of ICA modes: 

u (y ; x, z, t) = 
n ∑ 

i =1 
s i (x, z, t) u ICA 

i (y ) , (13) 
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where u ICA 
i (y ) is the i th ICA mode, and the coefficients s i of these 

modes maximize independence. In this paper, we only study the 
multiscale localised modes in the wall-normal direction; thus, x , z
and t only serve to increase the number of samples. 

We first obtain the POD modes of the streamwise velocity fluc- 
tuations by: ∫ h 

0 
R (y, y ′ ) u POD 

j (y ′ )d y ′ = λ j u POD 
j (y ) , (14) 

where h is the half-height of the channel, u POD 
j (y ) denotes the jth 

POD mode, R (y, y ′ ) = 〈 u (y ; x, z, t) u (y ′ ; x, z, t) 〉 is the two-point cor- 
relation in the wall-normal direction, and the angular bracket 〈·〉 
denotes the ensemble average, which is performed in time and in 
the streamwise and spanwise directions due to homogeneity. Then, 
the velocity field can be represented by the POD modes: 

u (y ; x, z, t) = 
n ∑ 

j=1 
o j (x, z, t) u POD 

j (y ) , (15) 

where o j is the coefficient of the jth POD mode. When the dimen- 
sion n is large, we can neglect some POD modes that have little 
energy and use an appropriate number of modes to perform the 
following ICA decomposition, thereby reducing the dimension and 
making the ICA simpler. 

Assuming that o j can be expressed as an ICA model: 

o j (x, z, t) = 
n ∑ 

i =1 
A ji s i (x, z, t) , (16) 

where o j denotes the observed signal, which can be obtained by 
Eq. (15) ; s i ( i = 1 , 2 , · · · , n ) are independent source signals; and 
A ji is the element in the mixing matrix. Substituting Eq. (16) into 
Eq. (15) yields: 

u (y ; x, z, t) = 
n ∑ 

i =1 
s i (x, z, t) 

[ 
n ∑ 

j=1 
A ji u POD 

j (y ) 

] 

. (17) 

Thus, we can obtain n ICA modes as: 

u ICA 
i (y ) = 

n ∑ 

j=1 
A ji u POD 

j (y ) . (18) 

This ICA procedure can be used for other variables, such as 
pressure and streamwise vorticity, and for all three velocity com- 
ponents, in which the POD modes of one velocity component must 
be replaced with the POD modes of all velocity components. 

Some ICA modes described by Eq. (18) are not smooth and 
have small amplitudes, which can be considered as noise. To dis- 
card these noise modes, we define the following regularization cri- 
terion based on the local energy ratio: 

ρi = max 
y ∈ (0 ,h ] 

〈 s 2 
i 〉 [ u ICA 

i (y )] 
2 

n ∑ 

j=1 
〈 s 2 

j 〉 [ u ICA 
j (y )] 

2 
, (19) 

ρi is the maximum ratio of the energy of the i th ICA mode to 
the local total energy at different wall-normal positions. A small 
ρi implies that the i th ICA mode can be ignored at all wall-normal 
positions; then, this mode can be discarded. In this paper, we re- 
gard the modes of ρi < 0 . 05 as noise and only retain the modes 
of ρi ≥ 0 . 05 . We assume that m modes remain after the regular- 
ization, and the indices of these modes are i = 1 , 2 , · · · , m . The ve- 
locity field can be exactly reconstructed by n linearly uncorrelated 
modes, and m modes after regularization can only approximately 
reconstruct the velocity field: 

u ICA ( y j ; x, z, t) = 
m ∑ 

i =1 
u ICA 

i ( y j ) s 
′ 
i (x, z, t) , (20) 

where u ICA ( y j ; x, z, t) is the approximate velocity field recon- 
structed by m ICA modes and s ′ 

i is the modified coefficient. The 
velocity field of each mode in the channel is: 

u ICA 
i (y ; x, z, t) = u ICA 

i (y ) s ′ i (x, z, t) . (21) 

The reconstructed velocity field can be written as the sum of the 
contributions of the m ICA modes: 

u ICA (y ; x, z, t) = 
m ∑ 

i =1 
u ICA 

i (y ; x, z, t) . (22) 

We let N ji = u ICA 
i ( y j ) and the matrix N = ( N ji ) n ×m ; then: 

u ICA ( y j ; x, z, t) = 
m ∑ 

i =1 
N ji s 

′ 
i (x, z, t) . (23) 

To make the reconstructed velocity field u ICA ( y j ; x, z, t) a good ap- 
proximation of u ( y j ; x, z, t) , we determine the modified coefficient 
as: 

s ′ i (x, z, t) = 
n ∑ 

j=1 
Q i j u ( y j ; x, z, t) , (24) 

where ( Q i j ) m ×n = N + , and “+” in this study indicates the Moore- 
Penrose pseudoinverse, which provides a least-squares solution to 
a system of linear equations that lacks a unique solution [29] . 

In the next section, the ICA modes u ICA 
i (y ) for the wall-normal 

profile of the streamwise velocity fluctuations will be obtained us- 
ing the above procedure. 

In this study, we use datasets from the direct numerical sim- 
ulation (DNS) of turbulent channel flows at Re τ ≡ u τ h/ν = 205 , 
where u τ is the friction velocity, h is the half-height of the chan- 
nel and ν is the kinematic viscosity. The pseudospectral method is 
used to solve the Navier-Stokes equation, and the 3/2 rule is used 
to remove aliasing errors. Periodic boundary conditions are used 
in the streamwise and spanwise directions, and no-slip bound- 
ary conditions are used at the bottom and top walls. The com- 
putational domain is 1 . 3 πh × 2 h × 0 . 35 πh , and the grid numbers 
64 × 129 × 32 are used in the streamwise ( x ), wall-normal ( y ), and 
spanwise ( z) directions. The time step to advance the Navier-Stokes 
equations is considered to be �t + = 0 . 012 , and “+” indicates nor- 
malization with viscous scales. The Navier-Stokes solver and the 
datasets used in this study have been validated in previous studies 
[30] . 

One hundred snapshots of the instantaneous streamwise veloc- 
ity fluctuations are used. Because we only investigate the wall- 
normal modes from the wall to the centre of the channel, not the 
modes between two walls, the total number of samples for the ICA 
procedure is 409,600 ( 64 × 32 × 100 × 2 ). The velocity at the wall 
is zero, and the grid point at the wall is therefore not considered in 
the POD and ICA; there are also 64 grid points in the wall-normal 
direction. Therefore, 64 POD modes and 64 ICA modes are obtained 
according to the procedure. With regularization, 33 ICA modes re- 
main. To test whether the 33 ICA modes can reconstruct the ve- 
locity field well, we define the relative error of the reconstructed 
velocity field: 

ε(y ) = 
〈 [ u ICA (y ; x, z, t) − u (y ; x, z, t)] 

2 〉 
〈 u 2 ( y ; x, z, t) 〉 . (25) 

Results show that the relative error ε(y ) is less than 0.2% at all 
positions and less than 0.1% at most positions; thus, the 33 ICA 
modes can be used to reconstruct the velocity field well. 

Figure 1 a plots the velocity profile of four POD modes with 
i = 1 , 3 , 6 , 9 , and Fig. 1 b plots the velocity profile of four ICA 
modes with i = 5 , 11 , 17 , 24 . The POD modes are spatially extended 
and oscillatory throughout the region, similar to the trigonomet- 
ric functions in Fourier analysis. While the ICA modes are spa- 
tially localised, particularly for those modes whose peaks are near 
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Fig. 1. ( a ) Velocity profile of four POD modes with i = 1 , 3 , 6 , 9 . ( b ) Velocity profile of eight ICA modes with i = 5 , 11 , 17 , 24 (solid lines) and i = 30 , 31 , 32 , 33 (dashed lines). 

Fig. 2. Schematic of the height and size of the ICA mode. 

Fig. 3. ( a ) Sizes of the first 33 POD modes vary with height. The blue dashed line indicates that the size is h . ( b ) Sizes of the ICA modes vary with height. The blue dashed 
line indicates that the size is proportional to the height, and the black dotted circle indicates the ICA mode with i = 5 . 

the wall, the amplitudes of these modes asymptotically tend to- 
ward zero at the centre of the channel. In addition, there are some 
modes whose peaks are near the centreline, and these modes con- 
tribute to the fluctuations at the centre of the channel. Figure 1 b 
implies that spatial locality may indeed be induced by indepen- 
dence, which can be described as follows. If two structures are 
localised in space (i.e., their intersection is relatively small), then 
they are more likely to be independent. In contrast, if two struc- 
tures are spatially extended (i.e., their intersection in space is rela- 

tively large), then they are less likely to be independent. Therefore, 
the ICA method provides a path to obtain spatially localised struc- 
tures. 

To quantify the spatial extension of a mode, the height γ and 
size d are defined as two characteristic length scales. The height of 
a mode u i (y ) is defined as: 

γi = 

∫ h 
0 y [ u i (y )] 2 d y ∫ h 
0 [ u i (y )] 2 d y 

, (26) 
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Fig. 4. Normalized velocity profile of the ICA modes with i = 10 , 11 , · · · , 16 . 

Fig. 5. Instantaneous isosurfaces of the streamwise velocity fluctuations of 
the ICA mode with i = 5 . The blue coloured objects are low-velocity streaks, 
u ICA 

5 (y ; x, z, t) / u τ = −0 . 5 . The red coloured objects are high-velocity streaks, 
u ICA 

5 (y ; x, z, t) / u τ = 0 . 5 . 

where γi represents the energy-weighted wall distance of the i th 
mode. The size of a mode u i (y ) is defined as: 

d i = 2 
√ 

3 

√ ∫ h 
0 (y − γi ) 

2 
[ u i (y )] 2 d y ∫ h 

0 [ u i (y )] 2 d y 
, (27) 

where d i represents the energy-weighted spatial extension of the 
i th mode. If the energy of a mode is uniformly distributed in the 
region [0 , h ] , the size of the mode is calculated as h according to 
Eq. (27) . Figure 2 shows sketches of the height and size of a mode. 
Both the height and size of the mode shown in Fig. 2 b are larger 
than those shown in Fig. 2 a. Although the height of the mode in 
Fig. 2 c is larger than that in Fig. 2 a, the two modes have the same 
size. As mentioned before, the order of the independent compo- 
nents cannot be determined by the ICA procedure [23] ; thus, we 
sorted the ICA modes according to their heights from small to 
large. 

Figure 3 a plots the sizes of the first 33 POD modes with the 
heights. The sizes of most POD modes are h, which means that 
the energy of most POD modes is distributed throughout the re- 
gion [0 , h ] ; thus, the POD modes approximate the velocity field in 
a global sense. Figure 3 b plots the sizes of ICA modes with the 
heights. The sizes of most ICA modes are smaller than those of 
POD modes, indicating the spatial locality of ICA modes. In addi- 
tion, the sizes of ICA modes exhibit a multiscale nature and are 
approximately proportional to the heights, particularly the modes 
with i = 10 , 11 , · · · , 16 . We define the normalized velocity profile 
of the ICA mode: 

u ∗i (y ) = u ICA 
i (y ) 

√ 
d i ∫ h 

0 [ u ICA 
i (y ′ )] 

2 
d y ′ 

. (28) 

Figure 4 plots the normalized velocity profile of the ICA modes 
with i = 10 , 11 , · · · , 16 , where the wall distance y is normalized by 
the height of each mode. A good collapse is shown in Fig. 4 , high- 
lighting the similarity of these ICA modes. This collapse implies 
that the height is the characteristic length scale of an ICA mode. 

The mode with i = 5 is special and is marked by the black dot- 
ted circle in Fig. 3 b; its size is much larger than other modes at the 
height γ + 

5 ≈ 13 in the buffer layer. Figure 5 plots the instantaneous 
isosurfaces of the streamwise velocity fluctuations of the ICA mode 
with i = 5 . Streamwise elongated streaks are also shown. Figure 6 a 
plots the velocity profile of the ICA mode with i = 5 . The positions 
with large amplitudes of this mode are in the region of y + < 30 ; 
thus, this mode primarily exists in the buffer layer. We then calcu- 

Fig. 6. ( a ) Velocity profile of the ICA mode with i = 5 . ( b ) Spanwise correlation of the ICA mode with i = 5 . The blue dashed line indicates the local maximum correlation, 
and the green dash-dotted line indicates the minimum correlation. 
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Fig. 7. Instantaneous isosurfaces of the streamwise velocity fluctuations of four ICA modes. The blue coloured isosurfaces, u ICA 
i (y ; x, z, t) / u τ = −0 . 5 . The red-coloured isosur- 

faces, u ICA 
i (y ; x, z, t) / u τ = 0 . 5 . ( a ) i = 1 ; ( b ) i = 7 ; ( c ) i = 30 ; ( d ) i = 33 . 

Fig. 8. ( a ) Sum of the second-order moments of all ICA modes compared with the DNS result of streamwise velocity fluctuations. ( b ) Sum of the second-order moments of 
ICA modes with i = 1 , 2 , · · · , 16 and with other ICA modes. 

late the spanwise correlation of this mode: 

R i ( r z ) = 
〈 s ′ i (x, z, t) s ′ i (x, z + r z , t) 〉 

〈 s ′ i (x, z, t) s ′ i (x, z, t) 〉 . (29) 

Figure 6 b plots the spanwise correlation of the ICA mode with 
i = 5 . The mean spanwise spacing between the adjacent low- and 
high-speed streaks is λ+ 

z ≈ 55 according to the minimum of the 
spanwise correlation, which is consistent with λ+ 

z ≈ 50 in Kim 
et al. [31] . The mean spanwise spacing between two adjacent low- 
speed or high-speed streaks is λ+ 

z ≈ 110 according to the local 
maximum of the spanwise correlation, which is consistent with 
λ+ 

z ≈ 100 in Smits et al. [32] . 
Figure 7 plots the instantaneous isosurfaces of two near-wall 

ICA modes with i = 1 , 7 and two outer ICA modes with i = 30 , 33 . 
The isosurfaces of i = 1 and i = 30 are disrupted and irregular, 
which are markedly different from the streamwise streaks of the 
i = 5 mode. The isosurfaces of i = 7 and i = 33 are elongated in the 

streamwise direction, similar to the streamwise streaks, but their 
spanwise spacing is larger than that of the i = 5 mode. 

If the ICA modes are strictly independent, we have the follow- 
ing equations for turbulence statistics: 

〈 u 2 (y ) 〉 = 
∑ 

i 
〈 s ′ 2 i 〉 [ u ICA 

i (y )] 
2 
, (30) 

R (y, y ′ ) = 
∑ 

i 
〈 s ′ 2 i 〉 u ICA 

i (y ) u ICA 
i (y ′ ) , (31) 

〈 u 3 (y ) 〉 = 
∑ 

i 
〈 s ′ 3 i 〉 [ u ICA 

i (y )] 
3 
. (32) 

Figure 8 a plots the sum of the second-order moments of all 
ICA modes compared with the DNS result of streamwise veloc- 
ity fluctuations. The two results are similar, which comes from 
the approximate independence between these modes. Figure 8 b 
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Fig. 9. ( a ) DNS result of the wall-normal correlation of streamwise velocity fluctuations. ( b ) Sum of the wall-normal correlation of all ICA modes. ( c ) Sum of the wall-normal 
correlation of ICA modes with i = 1 , 2 , · · · , 16 . ( d ) Sum of the wall-normal correlation of ICA modes with i = 17 , 18 , · · · , 33 . 

plots the sum of the second-order moments of ICA modes with i = 
1 , 2 , · · · , 16 and with other ICA modes. The energy of modes with 
i = 1 , 2 , · · · , 16 is distributed across the near-wall region. Figure 9 a 
plots the DNS result of the wall-normal correlation of stream- 
wise velocity fluctuations. Figure 9 b plots the sum of the wall- 
normal correlation of all ICA modes. These two results are sim- 
ilar. Figure 9 c plots the sum of the wall-normal correlation of 
ICA modes with i = 1 , 2 , · · · , 16 , and Fig. 9 d plots the result with 
other ICA modes. The wall-normal correlation of ICA modes with 
i = 1 , 2 , · · · , 16 is distributed in the near-wall region, which further 
shows the spatial locality of the ICA modes. 

Figure 10 a plots the sum of the third-order moments of all ICA 
modes and that of all POD modes compared with the DNS re- 
sult. The DNS third-order moment is positive in the near-wall re- 
gion and negative in the other region. The behaviour of the third- 
order moment is expected from the quadrant analysis and the 
most violent Reynolds shear-stress-producing events [31] ; thus, the 
strongest Reynolds shear-stress-producing events are the ejection 
events ( u ′ < 0 ) for y + > 12 ; sweep events also occur ( u ′ > 0 ) for 
y + < 12 . The sum of the third-order moments of all ICA modes has 
this feature, while that of all POD modes does not. The sum of the 
third-order moments of all POD modes is always negative through- 
out the region. Therefore, compared with POD, the ICA method is 
better for the higher-order statistics of turbulence. As mentioned 
before, the obtained ICA modes are not completely independent; 
thus, the sum of the third-order moments of all ICA modes is not 

exactly equal to the DNS result. Figure 10 b plots the sum of the 
third-order moments of ICA modes with i = 1 , 2 , · · · , 5 and with 
other modes. The modes with i = 1 , 2 , · · · , 5 contribute to the pos- 
itive third-order moment in the near-wall region, and the other 
modes contribute to the negative third-order moment. 

In this paper, the ICA method is used to decompose the wall- 
normal profile of the streamwise velocity fluctuations in turbulent 
channel flows. ICA aims to decompose the signals into indepen- 
dent components, and the spatial locality may be induced indepen- 
dently. Therefore, spatially localised structures in turbulence may 
be obtained by the ICA method. 

Using the DNS data of the turbulent channel flows at Re τ = 205 , 
we find that ICA modes are indeed spatially localised, and the 
second-order moments and the wall-normal correlation of some 
modes are localised near the wall and tend toward zero at the 
centre of the channel. In addition, the sizes of the ICA modes ex- 
hibit a multiscale nature and are approximately proportional to 
the heights. The size and height are well-defined length scales in 
ICA modes that neither extend to the entire region nor shrink to 
a point. Thus, ICA can be used as a data-driven method for lo- 
calised mode decomposition. ICA modes can also reconstruct the 
third-order moment of the velocity fluctuations well. The sum of 
the third-order moments of all ICA modes is positive in the near- 
wall region and negative in the other region, which agrees with the 
DNS result and the mechanism of the most violent Reynolds shear- 
stress-producing events. As a comparison, the sum of the third- 
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Fig. 10. ( a ) Sum of the third-order moments of all ICA modes and that of all POD modes compared with the DNS result. ( b ) Sum of the third-order moments of ICA modes 
with i = 1 , 2 , · · · , 5 and with other ICA modes. 

order moments of all POD modes is always negative throughout 
the region. 

As an application of the ICA method in turbulence, this study 
shows that the ICA may be able to connect statistical descriptions 
and structural descriptions of turbulence. Future work should anal- 
yse the exact relationship between ICA modes and the attached 
eddy model of wall turbulence in detail. 
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