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a b s t r a c t 

We analyze the error of large-eddy simulation (LES) in wall pressure fluctuation of a turbulent chan- 

nel flow. To separate different sources of the error, we conduct both direct numerical simulations (DNS) 

and LES, and apply an explicit filter on DNS data to obtain filtered DNS (FDNS) data. The error of LES 

is consequently decomposed into two parts: The first part is the error of FDNS with respect to DNS, 

which quantifies the influence of the filter operation. The second part is the difference between LES and 

FDNS induced by the error of LES in velocity field. By comparing the root-mean-square value and the 

wavenumber-frequency spectrum of the wall pressure fluctuation, it is found that the inaccuracy of the 

velocity fluctuations is the dominant source that induces the error of LES in the wall pressure fluctuation. 

The present study provides a basis on future LES studies of the wall pressure fluctuation. 

© 2021 The Authors. Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and 

Applied Mechanics. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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An accurate prediction of wall pressure fluctuations is a basis 

or the investigation of noise generation and flow-induced vibra- 

ion in many engineering applications [ 1 , 2 ]. In literature, there are

xtensive experimental and theoretical studies of the wall pressure, 

nd comprehensive reviews are given by Willmarth [3] and Eckel- 

ann [4] . 

During the last two decades, numerical simulation becomes in- 

reasingly important in turbulence research. Among various simu- 

ation strategies, the direct numerical simulation (DNS) provides an 

ccurate prediction of the wall pressure fluctuations [5–8] . How- 

ver, the computational cost of DNS increases at a rate of the cube 

f the Reynolds number [9] , and therefore, the application of DNS 

s limited to flows at low and moderate Reynolds numbers. The 

arge eddy simulation (LES) uses grid to resolve large-scale motions 

f turbulence with the influences of the unresolved motions repre- 

ented by a subgrid-scale model. LES is less expensive than DNS, 

nd is therefore expected to become a useful tool for engineering 

pplications. Viazzo et al. [10] used LES to study the statistics and 

pectra of the wall pressure fluctuations in turbulent channel flow 

t R e τ = 640 . Park and Moin [11] reported the space-time charac- 

eristics of the wall pressure fluctuations using wall-modeled LES 
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f a turbulent channel flow at R e τ = 20 0 0 . They noted that the

esolution required for an accurate prediction of the wall pressure 

uctuations was more stringent than that of the velocity field. In 

he above LES studies of the wall pressure fluctuations, although 

ome features of the wall pressure fluctuations are captured quali- 

atively, the error is non-negligible. 

In an incompressible turbulent channel flow, the pressure is 

overned by the following Poisson equation and boundary condi- 

ions 

1 

ρ

∂ 2 p 

∂ x k ∂ x k 
= f = −∂u i 

∂x j 

∂u j 

∂x i 
, 

∂ p 

∂x 2 
( x 2 = ±h ) = ν

∂ 2 u 2 

∂x 2 
2 

, (1) 

here p denotes the pressure, u i is the velocity, with the subscript 

 = 1, 2, and 3 being the streamwise, wall-normal, and spanwise di- 

ections, respectively, ρ and ν represent the density and kinematic 

iscosity, respectively, x 2 = ±h represents the locations of two solid 

alls, and h is one-half the channel height. Filtering Eq. (1) results 

n the governing equation of the resolved pressure as 

1 

ρ

∂ 2 p 

∂ x k ∂ x k 
= f = −∂u i 

∂x j 

∂u j 

∂x i 
, 

∂ p 

∂x 2 
( x 2 = ±h ) = ν

∂ 2 u 2 

∂x 2 
2 

, (2) 
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Table 1 

Number of grid points N i and grid resolution �x i for DNS 

and LES of turbulent channel flow at R e τ = 550 . 

N 1 × N 2 × N 3 �x 1 
+ �x 2 

+ �x 3 
+ 

DNS 576 × 256 × 576 12.0 0.04–6.75 6.0 

LES 96 × 64 × 96 72.0 0.66–27.0 36.0 

w

r

o

w  

r

s

D

b

T

v

i

e

c

t

b

(

T

c

t

n

u

s

i  

s

b

i

p

p  

t

r

c

s

s

o  

t

t

v

s

u

w

i

t

s

e

l

u

w

w  

f

w

p

w

w

i

d

i

t  

h  

p

i

c

t  

w

4

x

a

×

w

d

f

s




w

t

b

k







a

a

t

o

L

t

d

t

F

o

w

t  

b  

n

o

v

here the overline denotes a filtering operation. In LES, only the 

esolved part of u i is available, and as such the pressure can be 

nly calculated approximately by solving the following equation 

1 

ρ

∂ 2 p 

∂ x k ∂ x k 
= f = −∂ u i 

∂x j 

∂ u j 

∂x i 
, 

∂ p 

∂x 2 
( x 2 = ±h ) = ν

∂ 2 u 2 

∂x 2 
2 

, (3) 

here the velocity in the source term of Eq. (2) is replaced by the

esolved velocity ū i . By contrasting Eqs. (2) and (3) , it is under- 

tood that the error of LES in the pressure (with respect to the 

NS result) indeed consists of two parts. The first part is induced 

y the filter, or equivalently, by the difference between u i and ū i . 

he second part is caused by the inaccuracy of LES in the resolved 

elocity ū i , or equivalently, by the difference between DNS and LES 

n ū i . 

In the present study, we aim to find the dominate source of the 

rror of LES in the wall pressure fluctuations. For this purpose, we 

onduct both DNS and LES of a turbulent channel flow, and filter 

he DNS data to obtain filtered DNS (FDNS) data. The error induced 

y the filter is estimated by comparing the solutions of Eqs. (2) and 

3) , in which u i and ū i are given by DNS and FDNS, respectively. 

he error caused by the inaccuracy of LES in ū i is quantified by 

omparing the solutions of Eq. (3) between FDNS and LES. 

To collect data needed for the analyses of the error of LES in 

he wall pressure fluctuation, both DNS and LES of turbulent chan- 

el flows are conducted. The Reynolds number is set to Re b = 

 b h/ν = 10150 , where u b is the bulk mean velocity. The corre- 

ponding Reynolds number based on the wall friction velocity u τ
s R e τ = u τ h/ν = 550 . The flow is driven by a streamwise pres-

ure gradient, which is adjusted to sustain a constant value of the 

ulk mean velocity u b . Periodic boundary conditions are adopted 

n the streamwise and spanwise directions, while no-slip and no- 

enetration conditions are prescribed at two solid walls. The com- 

utational domain is set to L 1 × L 2 × L 3 = 4 πh × 2 h × 2 πh . For spa-

ial discretization, all flow quantities are expanded into Fourier se- 

ies in the streamwise and spanwise directions, and into Cheby- 

hev polynomials in the wall-normal direction. A third-order time- 

plitting method [12] is utilized for time advancement. Table 1 

ummarizes the number of grid points N i and grid resolution �x i 
f DNS and LES. The dynamic Smagorinsky model [ 13 , 14 ] is chosen

o conduct LES. 

To obtain the FDNS flow field, a sharp cut-off filter in the spec- 

ral space is applied. Below are the descriptions of the filter. The 

elocity field u i of DNS is first expanded into coefficients of Fourier 

eries and Chebyshev polynomials as 

 i ( x i , t ) = 

1 
2 N 1 −1 ∑ 

m = − 1 
2 N 1 

1 
2 N 3 −1 ∑ 

n = − 1 
2 N 3 

N 2 ∑ 

p=0 

˜ u i ( m, p, n, t ) 

×exp [ i ( mαx 1 + nβx 3 ) ] T p ( x 2 ) , 

(4) 

here α = 2 π/L 1 and β = 2 π/L 3 are the wavenumber resolutions 

n the streamwise and spanwise directions, respectively, T p ( x 2 ) is 

he p th-order Chebyshev polynomial, and the tilde denotes the 

pectral coefficients of an arbitrary flow quantity. The spectral co- 

fficients of velocity ˜ u are then truncated to obtain the FDNS ve- 
i 

2 
ocity, viz. 

¯
 i ( x i , t ) = 

1 
2 N 

f 
1 
−1 ∑ 

m = − 1 
2 N 

f 
1 

1 
2 N 

f 
3 
−1 ∑ 

n = − 1 
2 N 

f 
3 

N f 
2 ∑ 

p=0 

˜ u i ( m, p, n, t ) 

×exp [ i ( mαx 1 + nβx 3 ) ] T p ( x 2 ) , 

(5) 

here N 

f 
i 

represents the number of grid points of the FDNS data, 

hich is chosen to be consistent with that of LES (see Table 1 ) to

acilitate a direct comparison of FDNS and LES results. 

In the applications of the flow-induced vibration and noise, the 

avenumber–frequency spectrum of wall pressure plays an im- 

ortant role. Therefore, we also examine the error of LES in the 

avenumber–frequency spectrum of the wall pressure fluctuation, 

hich is calculated using the method of Choi and Moin [6] . Specif- 

cally, a time series of the wall pressure fluctuation p( x 1 , x 3 , t ) is 

ivided into intervals with 50% overlapping with the neighbor- 

ng ones. Each time interval contains N s = 512 time samples. The 

ime length between two samples is �T + s = 0 . 298 , which gives the

ighest frequency of ω 

+ 
max = π/ �T + s = 10 . 54 . In this paper, the su-

erscript " + " is used to denote variables non-dimensionalized us- 

ng the viscous lengthscale ν/ u τ and wall-friction velocity u τ as 

haracteristic length and velocity scales, respectively. Consequently, 

he time duration of each time interval is T + 
I 

= N s �T + s = 152 . 6 ,

hich corresponds to a frequency resolution of �ω 

+ = 2 π/T + 
I 

= 

 . 1 × 10 −2 . 

The wall pressure p in each interval is Fourier transformed in 

 1 and x 3 -directions and in time to obtain its Fourier coefficients ˆ p 

s 

ˆ p ( k 1 , k 3 , ω ) = 

1 

L 1 L 3 

√ 

T I 
∫ T I 

0 
w 

2 ( t ) d t ∫ T I 
0 

∫ L 1 
0 

∫ L 3 
0 w ( t ) p ( x 1 , x 3 , t ) exp [ i ( k 1 x 1 + k 3 x 3 + ωt ) ] d x 1 d x 3 d t, 

(6) 

here k 1 and k 3 are wavenumbers in the streamwise and spanwise 

irections, respectively, and w (t) is a standard Hanning window 

unction. The wavenumber–frequency spectrum of the wall pres- 

ure fluctuation 
pp ( k 1 , k 3 , ω ) is then calculated as Eq. (7) 

pp ( k 1 , k 3 , ω ) = 

1 

αβ�ωN I 

∑ 

ˆ p ( k 1 , k 3 , ω ) ̂  p ∗( k 1 , k 3 , ω ) , (7) 

here the asterisk “∗” denotes complex conjugate. The summa- 

ion is performed over all time intervals, and N I is the total num- 

er of time intervals. Taking the summation of 
pp ( k 1 , k 3 , ω ) over 

 3 yields the k 1 −ω spectrum of the wall pressure fluctuation 

pp ( k 1 , ω ) , viz. 

pp ( k 1 , ω ) = 

∑ 

k 3 


pp ( k 1 , k 3 , ω ) . (8) 

Figure 1 compares the profiles of the resolved mean velocity Ū 

+ 
1 

nd root-mean-square (RMS) velocity ū + 
i,rms 

obtained from FDNS 

nd LES. The corresponding full-scale values of U 

+ 
1 

and u + 
i,rms 

ob- 

ained from DNS are also depicted. Note that due to the error 

f LES, the values of the wall friction velocity u τ obtained from 

ES and DNS are different. To facilitate an unbiased comparison of 

he results, the value of u τ obtained from DNS is used for non- 

imensionalizing both DNS and LES results. It is seen from Fig. 1 a 

hat the profiles of U 

+ 
1 

and Ū 

+ 
1 

obtained respectively from DNS and 

DNS collapse, indicating that the filtering imposes little influence 

n the mean flow. The LES result of Ū 

+ 
1 

is in reasonable agreement 

ith the FDNS result, except for a slight underprediction in part of 

he logarithmic layer ( 30 < x + 
2 

< 180 ). Figure 1 b shows that in the

uffer layer ( 5 < x + 
2 

< 30 ), where turbulence is intensive, the mag-

itudes of all three components of the resolved RMS velocity ū + 
i,rms 

f FDNS are smaller than those of the corresponding full-scale RMS 

elocity u + 
i,rms 

of DNS, because the small-scale motions are filtered 
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Fig. 1. Profiles of a mean streamwise velocity and b RMS velocity obtained from DNS, FDNS, and LES. 

Fig. 2. Profiles of the RMS values of the pressure source term f̄ + rms obtained from 

DNS, FDNS, and LES. 
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Fig. 3. Profiles of the resolved RMS pressure p̄ + rms obtained from DNS, FDNS, and 

LES. 
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ut in the FDNS data. In LES, the magnitudes of ū + 
i,rms 

are overes- 

imated in comparison with the FDNS results, indicating that the 

issipation provided by the subgrid-scale model is insufficient in 

he present LES. 

Before we present the results of pressure, its source term f (in 

NS, or f̄ in FDNS and LES) is first examined. The definitions of 

f and f̄ are given in Eqs. (1) –(3) . Figure 2 compares the RMS val-

es of the resolved pressure source terms f̄ + rms obtained from DNS, 

DNS, and LES. It is observed that the magnitude of f̄ + rms obtained 

rom FDNS is close to the DNS result. In contrast, the LES overesti- 

ates the magnitude of f̄ + rms by approximately 60% in comparison 

ith the DNS result. Noticing that the LES error in ū + 
i,rms 

is only 10% 

 Fig. 1 b), it is evident that the error in velocity is scale-dependent.

pecifically, the error in the velocity fluctuation u i mainly occurs 

t small scales, which is amplified by the spatial derivative in the 

ressure source term. We have also examined the error in each 

omponent of the pressure source term. It is found that among all 

f the six components of 
∂ ̄u i 
∂ x j 

∂ ̄u j 
∂ x i 

, the error in 

∂ ̄u 1 
∂ x 2 

∂ ̄u 2 
∂ x 1 

is most signif- 

cant, which reaches 160% approximately and is mainly responsible 

or the error in the total pressure source term. 

Figure 3 compares the profiles of the resolved RMS pressure 

p̄ + rms obtained from DNS, FDNS, LES. Here, the resolved pressure 

uctuation of DNS refers to the solution of Eq. (2) , while the FDNS

nd LES values are obtained by solving Eq. (3) with ū i being the 

esolved velocity of FDNS and LES, respectively. As shown in Fig. 3 , 
3 
he magnitude of the resolved RMS pressure of FDNS is lower 

han the DNS result. Compared to the FDNS results, the LES over- 

redicts the magnitude of p̄ + rms in the viscous sublayer for x + 
2 

< 5 , 

uffer layer for 5 ≤ x + 
2 

< 30 , and part of the logarithmic layer for

 

+ 
2 

< 150 . Particularly, the RMS value of wall pressure is overes- 

imated in LES by approximately 50%. Such an overestimation of 

p̄ + rms in LES is consistent with the results of the RMS value of the 

ressure source term shown in Fig. 2 . 

Figure 4 compares the k 1 −ω spectrum of the wall pressure 

uctuation 
+ 
pp ( k 

+ 
1 
, ω 

+ ) obtained from DNS, FDNS, and LES. To 

acilitate a quantitative comparison of the results, profiles of 
+ 
pp ( k 

+ 
1 
, ω 

+ ) as a function of ω 

+ at specific streamwise wavenum- 

ers, i.e., k + 
1 

= 0 . 005 , 0 . 018 , 0 . 036 , are depicted in Fig. 5 . From

igs. 4 a and 5 , it is observed that the FDNS and DNS results are

n general consistent near the convective peak, which is located at 

elatively low streamwise wavenumber k + 
1 

= 0 . 005 and frequency 

 

+ = 0 . 1 . In the low-value region at larger streamwise wavenum- 

ers or frequencies, the FDNS slightly under-predicts the ’energy’ 

evel of the spectrum of the wall pressure fluctuation. In this re- 

ard, the filtering only influences the resolved pressure fluctua- 

ion near the cut-off wavenumbers and high frequencies, while the 

mall wavenumbers and low frequencies corresponding to large- 

cale and long-term motions remain almost unchanged. Figures 4 b 

nd 5 show that the disagreement between LES and DNS is appar- 

nt near the convective peak. The LES overestimates the spectral 

agnitude of the wall pressure fluctuation. 
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Fig. 4. Isopleths of the k 1 − ω spectrum of the wall pressure fluctuation 
+ 
pp ( k 

+ 
1 
, ω 

+ ) obtained from a DNS and FDNS and b DNS and LES. The solid, dash-dotted and dashed 

lines represent the results of DNS, FDNS and LES, respectively. 

Fig. 5. Profiles of the k 1 − ω spectrum of the wall pressure fluctuation 
+ 
pp ( k 

+ 
1 
, ω 

+ ) 
at specific streamwise wavenumbers. 
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The wavenumber-dependent convective velocity U c ( k 1 ) 

nd spectral bandwidth B ( k 1 ) are two key indicators of the 

avenumber–frequency spectrum, which are defined respectively 
Fig. 6. Wavenumber-dependent a convective velocity and b spectral ba

4 
s [15] : 

 c ( k 1 ) = 

∫ ω · 
( k 1 , ω ) d ω 

k 1 ∫ 
( k 1 , ω ) d ω 

, (9) 

nd 

 ( k 1 ) = 

∫ ( ω − U c ( k 1 ) k 1 ) 
2 · 
( k 1 , ω ) d ω 

∫ 
( k 1 , ω ) d ω 

. (10) 

Figure 6 compares the values of U c ( k 1 ) and B ( k 1 ) of the k 1 −
spectrum of the wall pressure fluctuation obtained from DNS, 

DNS, and LES. In consistent with the observations from Figs. 4 a 

nd 5 , the results of FDNS are in good agreement with those of 

NS. From Fig. 6 a, it is seen that the convective velocity U c ( k 1 )

btained from LES is lower than the DNS and FDNS results, while 

ig. 6 b shows that the LES under-estimates the spectral bandwidth 

 ( k 1 ) at high wavenumbers. In the present study, to analyze the 

rror of LES in the wall pressure fluctuation, DNS and LES of a tur- 

ulent channel flow at R e τ = 550 are conducted, and FDNS data 

re obtained by applying a spectral cut-off filter on the DNS data. 

he RMS pressure and wavenumber–frequency spectrum of the 

all pressure fluctuation of FDNS are in general consistent with 

he DNS results. The filtering operation only influences the re- 

olved pressure near the cut-off scale. In contrast, the LES over- 

stimates both the RMS value and the spectral energy level of the 

all pressure fluctuation, indicating that the error in the velocity 

radient is the dominant source that induces the error in the wall 
ndwidth of the k 1 − ω spectrum of the wall pressure fluctuation. 
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[  

[

[

[  

[

[  
ressure fluctuation. The results obtained from the present study 

uggest that improving the accuracy of the velocity gradient is cru- 

ial for making better predictions of the wall pressure fluctuation 

n LES. As a final remark of this paper, we note that the present

tudy focuses on identifying the issue of LES that the error in the 

all pressure fluctuation is highly dependent on the error in the 

elocity fluctuations. This conclusion is drawn based on the test of 

urbulent channel flow at R e τ = 550 using specific grid resolution 

nd numerical scheme. In the future, the influences of Reynolds 

umber, grid resolution, and numerical scheme need to be exam- 

ned systematically to provide a more comprehensive understand- 

ng of the problem. 
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