
Theoretical and Applied Mechanics Letters 11 (2021) 100222 

Contents lists available at ScienceDirect 

Theoretical and Applied Mechanics Letters 

journal homepage: www.elsevier.com/locate/taml 

Article 

A study of inner-outer interactions in turbulent channel flows by 

interactive POD 

Hongping Wang 

a , b , Qi Gao 

c , ∗

a State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China 
b School of Engineering Sciences, University of the Chinese Academy of Sciences, Beijing 10 0 049, China 
c State Key Laboratory of Fluid Power and Mechatronic System, Department of Mechanics, School of Aeronautics and Astronautics, Zhejiang University, 

Hangzhou 310058, China 

a r t i c l e i n f o 

Article history: 

Received 27 October 2020 

Revised 5 December 2020 

Accepted 9 December 2020 

Available online 17 February 2021 

This article belongs to the Fluid Mechanics. 

Keywords: 

Wall turbulence 

Interactive POD 

Inner-outer interaction 

Amplitude modulation 

Frequency modulation 

a b s t r a c t 

The amplitude and frequency modulation of near-wall flow structures by the large-scale motions in outer 

regions is studied in turbulent channel flows. The proper orthogonal decomposition (POD) method is ap- 

plied to investigate the interactions between the near-wall motions and the large-scale flow modes of 

the outer regions based on two datasets from direct numerical simulation of turbulent channel flows 

at Reynolds numbers of 550–10 0 0. The fluctuations in the fields u + , v + , w 

+ and Reynolds shear stress 

−(u v ) + are studied to understand the mechanism of amplitude and frequency modulation of the near- 

wall structures by the outer large-scale motions. The amplitude modulation coefficient of the Reynolds 

shear stress is larger than that of the velocity components. The frequency modulation effect has an op- 

posite influence in the spanwise direction compared to the streamwise direction. The streamwise char- 

acteristic frequency increases with increasing large-scale velocity. However, the spanwise characteristic 

frequency exhibits a decreasing trend with increasing large-scale velocity in the near-wall region. 

© 2021 Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics. 
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. Introduction 

Over the past few decades, studies on coherent structures of 

all-bounded turbulence became an important topic beginning 

ith the observation of near-wall streaks by Kline et al. [1] . Ac- 

ording to the review by Smits et al. [2] , these coherent struc- 

ures contain near-wall streaks, hairpin vortices, large-scale mo- 

ions (LSMs) with a streamwise scale of O(δ) ( δ is the thickness 

f the boundary layer) and very-large-scale motions (VLSMs, or 

uperstructures) with a streamwise length scale of ( 10 δ) . They 

ierarchically distribute over different wall-normal locations and 

resent different spatial or temporal scales. Recent studies have 

ound that the large scales primarily associated with the outer 

V)LSMs exert superposition and modulation effects on the near- 

all smaller scales [ 3 –5 ]. 

Low- and high-speed streaks exist in the near-wall region of 

all turbulence. Kline et al. [1] first observed the existence of 

treaks with hydrogen bubbles in flow visualization. The span- 

ise spacing of streaks has a log-normal distribution and increases 
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s the distance from the wall increases [6] . In the premultiplied 

treamwise and spanwise energy spectra of streamwise velocity 

uctuations, there is a clear energy peak in the near-wall region. 

his peak is located at wall-normal location y + = 15 (the super- 

cript + denotes a normalization with inner scales), and the dom- 

nant streamwise and spanwise wavelengths, which are scaled to 

iscous wall units, are approximately 10 0 0 and 10 0, respectively 

7] . These values are nearly invariant under different high Reynolds 

umbers. Recent studies have pointed out that the small scales 

annot be scaled by the viscous units and the vortical structures 

re progressively strengthened as Reynolds number increases at 

ower Reynolds numbers [ 8 , 9 ]. The numerical simulations [10–

2] indicated the existence of a self-sustaining near-wall cycle that 

s a local phenomenon in the near-wall region and is not influ- 

nced by the outer flow. The entire process of hairpin vortex gener- 

tion from near-wall streamwise vortices was studied based on the 

treak transient growth from a direct numerical simulation (DNS) 

f a minimal channel at R e τ = 400 [13] . 

The hairpin vortices predominantly reside in the logarithmic 

ayer of the boundary. The vortex populations regarding the core 

ize, orientation, circulation and propagation velocity of eddies in 

he buffer and logarithmic regions of the turbulent boundary layer 

ere investigated based on DNS datasets at R e τ = 590 and 934 and 
cal and Applied Mechanics. This is an open access article under the CC BY-NC-ND 
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IV data at R e τ = 1160 by Gao et al. [14] . The orientation distri-

utions indicate that the most probable wall-normal inclination 

f eddies increases with increasing wall-normal distance. Tomkins 

nd Adrain [15] and Ganapathisubramani et al. [16] used PIV mea- 

urements in the logarithmic region, showing that the elongated 

ow-speed regions induced by the motion of the hairpin vortices 

re flanked by vortical motions, which are the necks of hairpin 

tructures. 

When a group of hairpin vortices aligns along the streamwise 

irection at a mean growth angle of 10 ∼ 20 ◦, it is considered 

 vortex packet, which is normally referred to as an LSM [15–

7] . LSMs and VLSMs are distinguished by the streamwise length 

cales, which can be determined by many approaches. These ap- 

roaches include linear stochastic estimation (LSE) [ 15 , 18 ], proper 

rthogonal decomposition (POD) [ 19 , 20 ], and premultiplied energy 

pectrum analysis [21] . Balakumar and Adrain [22] investigated the 

treamwise length scale of LSMs and VLSMs in turbulent chan- 

el flow, a zero-pressure-gradient (ZPG) turbulent boundary layer 

TBL) and pipe flow. The streamwise length scale of LSMs was 

ound to be approximately 2 − 3 δ, while that of VLSMs reached 

pproximately 10 δ and increased with increasing wall-normal lo- 

ation y + . They concluded that substantial portions of the kinetic 

nergy ( 40 − 65% ) and the Reynolds shear stress ( 30 − 50% ) are

arried by VLSMs in pipe, channel and ZPG boundary layer flows. 

ang et al. [23] recently used linear stochastic estimation (LSE) 

nd conditional averaging methods to analyze the properties of 

airpin vortices and eddy packets. They found that the population 

ensity of the packets in a TBL is large enough to leave footprints 

n conditionally averaged flow fields. In terms of the generation 

f VLSMs, Kim and Adrain [21] proposed that VLSMs are caused 

y streamwise alignment of LSMs, whereas del Álamo and Jiménez 

24] suggested that they could be formed by some linear or non- 

inear processes, which can be described by the Orr-Sommerfeld- 

quire equations for the mean turbulent profile. However, the ori- 

in of VLSMs remains unclear. 

Interaction among structures with different scales is a ma- 

or issue when studying turbulence. Under the framework of 

ownsend’s attached eddy hypothesis [ 25 , 26 ], the outer large-scale 

tructures may affect the inner small-scale structures over a cer- 

ain range of wall-normal locations [4] . Hunchins and Marusic 

3] applied the premultiplied energy spectrum methods to study 

he TBL and found a secondary energy peak in the outer region, 

hich became comparable to that of the near-wall cycle when 

he Reynolds number increased. Marusic et al. [27] investigated 

he correlation of the inner and outer signals, mostly with hot- 

ire techniques, and claimed that the outer structures affect the 

ear-wall turbulent fluctuations via superposition and modulation. 

 concise algebraic outer-inner model was proposed to predict the 

ear-wall turbulence with only large-scale information from the 

uter boundary layer region [27] . All three velocity components 

ere investigated using cross-wire probes by Talluru et al. [28] , 

nd the results indicated that the small-scale spanwise fluctuations 

 

+ , wall-normal fluctuations v + and Reynolds shear stress −(u v ) + 
re modulated in a very similar manner to the streamwise fluctua- 

ions u + . Furthermore, Ganapathisubramani et al. [4] used the hot- 

ire data of the turbulent boundary layer to examine the impact 

f the strength of the large-scale motions on the amplitude and 

requency of the small-scale motions at high Reynolds numbers. 

avelet analysis was employed to examine the amplitude and fre- 

uency modulation in broadband signals by Baars et al. [29] . It was 

ound that the time shift in the frequency modulation is smaller 

han that in the amplitude modulation. 

For multiscale analysis, a critical step is to extract the flow 

tructures of different length scales. The velocity fluctuations are 

sually separated into large (outer) and small (inner) scales using 

 spectral filter of wavelength λ+ 
x = δ+ ( λ+ 

x denotes the streamwise 
2 
avelength). This criterion is determined according to the stream- 

ise premultiplied energy spectra. Unfortunately, this method, 

hich will be introduced in Sect. 2.1, is hard to be applied to low- 

eynolds-number turbulent flows due to the insufficient scale sep- 

ration [ 2 , 3 ]. Agostini and Leschziner [30] used Huang-Hilbert em- 

irical mode decomposition (EMD) to separate the velocity scales 

ith no predetermined bases needed. The large scales were chosen 

rom the intrinsic mode functions (IMFs) based on the local tem- 

oral/spatial scales in EMD. Another method to extract the large- 

cale structures is POD [ 20 , 31-34 ], which can reconstruct the most 

nergetic structures in turbulence. While data-driven models gen- 

rated from EMD or POD usually reflect the local characteristics, 

t still is hard to extract and identify the large scales related to 

uter flow structures. Recently, linear coherence spectra have been 

sed to analyze velocity signals at two different wall-normal lo- 

ations for triple decomposition of the streamwise velocity en- 

rgy spectra [ 9 , 35–37 ]. This means that the velocity fields along

he wall-normal direction are highly correlated. Moreover, as ex- 

lained by Talluru et al. [28] , most of studies on modulations in 

urbulence have been restricted to analyzing the modulation of the 

treamwise velocity component along the streamwise direction. It 

s very important to check the modulation effect for all three ve- 

ocity components along different directions. 

In the present work, we developed a POD-based method, 

amed interactive POD, to explore the relationship between large 

nd small scales for all three velocity components at low-Reynolds- 

umber turbulent flows. The rest of the article is organized as fol- 

ows. First, scale separation approaches based on the Fourier trans- 

orm and interactive POD are introduced and compared. Second, 

he superposition, amplitude and frequency modulations between 

arge and small scales of u + , v + , w 

+ and Reynolds shear stress 

(u v ) + are investigated using cross-correlation and conditional av- 

raging. It has been discovered that the streamwise frequency and 

panwise frequency display opposite trends when the large-scale 

elocity is increased at the same wall-normal locations. Finally, a 

onclusion is made regarding perspectives on the interactive POD 

nd the modulation effects. 

. Descriptions of the DNS data 

In the subsequent descriptions, the streamwise, spanwise and 

all-normal directions are denoted x + , z + and y + , and the velocity 

uctuations are represented by u + , w 

+ and v + , respectively. All the 

elocity components are normalized using the skin friction velocity 

 τ , and the length scale is normalized by the inner length scale 

/ u τ , where ν is the kinematic viscosity. Two DNS datasets of fully 

eveloped turbulent channel flows are employed in this study. The 

ataset of the lower friction Reynolds number R e τ = 550 is denoted 

DNS1”, while the other dataset of R e τ = 10 0 0 is called “DNS2”. 

The bulk Reynolds number R e b = U b h/ν of DNS1 is 10,0 0 0. Here, 

 b is the bulk mean velocity, and h is the half-channel height 

 h = 1 in dimensionless units). The simulation followed the numer- 

cal procedure developed by Kim et al. [38] . Periodic boundary con- 

itions were employed in both the streamwise and spanwise direc- 

ions, and the no-slip boundary condition was applied at the wall. 

 pseudospectral method was employed to numerically solve the 

avier-Stokes equations, where Fourier series were used in both 

he streamwise and spanwise directions. Meanwhile, a sixth-order 

ompact finite difference scheme was utilized in the wall-normal 

irection. The aliasing errors were removed using the 3/2 rule. 

ime was advanced with a third-order, stiffly stable scheme. The 

omputation domain size was 8 πh × 2 h × 3 πh with a mesh of 

536 × 256 × 1152 in the streamwise, wall-normal and spanwise 

irections. The grid was uniform in the homogeneous directions, 

hile the points were closely concentrated in the wall-normal 

irection near both walls using cosine mapping. Therefore, the 
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Fig. 1. Statistical profiles of the two DNS datasets: a the mean streamwise velocity; 

b the streamwise turbulence intensity and the Reynolds shear stress. 
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Table 1 

Parameters of the cropped datasets. 

R e τ L x L z �+ 
x �+ 

z �+ 
t N x N z N t 

DNS1 550 5 δ 3 δ 6 6 0.592 459 276 1024 

DNS2 1000 5 δ 3 δ 9 9 1.23 556 334 1000 
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rid spacing normalized by the inner length scale in the stream- 

ise and spanwise directions was approximately 9.0 and 4.5, re- 

pectively. The minimum and maximum wall-normal grid spac- 

ngs were 0.0414 and 6.75, respectively. The time step was fixed 

t �t = 1 . 25 × 10 −3 h/ U b ( �t + ≈ 0 . 037 ). The data were stored ev-

ry eight time steps during a period of 20 . 48 h/ U b after the flow

ad fully developed and reached a statistically stationary state. 

DNS2 of a higher Reynolds number was downloaded from the 

ohns Hopkins Turbulence Databases (JHTDB) [39–41] . This tur- 

ulent channel flow was simulated from a DNS of wall-bounded 

ow with periodic boundary conditions in the streamwise and 

panwise directions and no-slip conditions at the top and bot- 

om walls. The Navier-Stokes equation was also solved using 

he wall-normal, velocity-vorticity formulation proposed by Kim 

t al. [38] . Details about the simulation can be found on the 

ebsite ( http://turbulence.pha.jhu.edu/cutout.aspx ). The simulation 

as performed in a domain with a size of 8 πh × 2 h × 3 πh dis-

retized on a grid of 2048 × 512 × 1536 . The grid spacing in the 

iscous unit was approximately 12.2 and 6.1 in the streamwise and 

panwise directions, respectively. The grid close to the wall was 

lso refined to achieve a grid spacing from 0.0165 to 6.15 from the 

all to the center of the channel along the wall-normal direction. 

Figure 1 shows the statistical profiles of these two DNS datasets. 

he curves of different Reynolds numbers agree well in the near- 

all region and show a great deviation in the outer region. The 

wo original DNS datasets are difficult to analyze because of the 

arge data size. In this study, both DNS datasets were cropped to 

 size of 5 δ × 3 δ at fixed wall-normal locations. All the velocity 

omponents were spline interpolated to a regular square mesh in 

he streamwise and spanwise planes. The interpolated grid spac- 

ng was 6 and 9 for DNS1 and DNS2, respectively. Table 1 provides 
3 
he parameters of the datasets. L x and L z are the lengths in the 

treamwise and spanwise directions, respectively. �+ 
x and �+ 

z are 

he grid spacings after interpolating the original DNS data to a reg- 

lar square mesh in the x − z plane. �+ 
t represents the time spac- 

ng, and N t is the total number. N x and N z denote the grid numbers 

n the streamwise and spanwise directions, respectively. The wall- 

ormal locations used in this paper are shown in the sections of 

he results. 

. The scale separation approaches 

.1. Scale separation based on the spectrum 

The streamwise premultiplied energy spectra of the streamwise 

elocity fluctuations are commonly used to explore the interac- 

ions of the large-scale structures with near-wall small-scale mo- 

ions. Hutchins and Marusic [3] stated that R e τ > 1700 is the min- 

mum requirement to observe two energy peaks in the streamwise 

pectral map for wall-bounded turbulence. McKeon and Morrison 

42] and Smits et al. [2] found that R e τ > 40 0 0 was required to

chieve a sufficient scale separation. The inner peak is located at 

 

+ = 15 and λ+ 
x = 10 0 0, while the outer peak resides in the cen-

er of the logarithmic region [ 7 , 43 ]. The magnitude of the outer

eak increases with Reynolds number, and the dominant stream- 

ise wavelength is much larger than the boundary thickness [3] . 

t low Reynolds numbers, the two energy sites are too close, and 

he outer peak is very ambiguous due to the insufficient separa- 

ion [3] . Therefore, the spectral filter method is difficult to apply 

o separate the outer large scales from the near-wall fields. 

In the present work, the outer peak of the streamwise spectra is 

ot clearly visible for the friction Reynolds numbers R e τ = 550 and 

0 0 0. However, two spectral peaks can be observed in the premul- 

iplied spanwise energy spectra of streamwise velocity fluctuations, 

s shown in Fig. 2 and described in detail by Wang et al. [44] .

he first peak emerges at approximately λ+ 
z = 125 and y + = 15. 

he wall-normal position of the outer peak is associated with the 

eynolds numbers, and the spanwise wavelength of the outer peak 

s normally equal to the thickness of the boundary layer [43–48] . 

he existence of inner and outer spectral peaks implies that the 

cales can be sufficiently separated in the spanwise direction us- 

ng the spectral filter method. For the streamwise-spanwise field, 

wo cutoff wavelengths need to be defined. The spanwise cutoff

avelength is chosen as λ+ 
z / δ

+ = 0.5 (the dashed-dotted lines in 

ig. 2 ) following the method of Bernardini and Pirozzoli [47] . The 

treamwise cutoff wavelength λx /δ is 1, similar to the strategy in 

athis et al. [49] , Marusic et al. [27] , and Mathis et al. [50] . Note

hat the 2D spectral filter method is only used in the outer re- 

ion to extract the large scales of the streamwise fluctuations u + 

n this work. Two issues need to be considered for scale separa- 

ion based on the Fourier transform. First, the data are discontin- 

ous at the edge because of the non-integer-period sampling. In 

his work, a larger flow field of the DNS was used to separate 

he scales using the fast Fourier transform (FFT). Then, the field 

as cropped as shown in Table 1 to perform the following analy- 

is. Second, there is no ideal low-pass filter because the signal can 

e distorted by the Gibbs phenomenon due to the sharp cutoff in 

he frequency domain [51] . Thus, a fourth-order elliptical Butter- 

orth filter was adopted in this work to perform low-pass filtering 

n the frequency domain [51] . Figure 3 shows one instantaneous 

http://turbulence.pha.jhu.edu/cutout.aspx
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Fig. 2. Premultiplied spanwise spectra of the u + fluctuations as a function of y + 

for DNS1 a and DNS2 b . The horizontal and vertical axes represent the spanwise 

wavelength and wall-normal location, respectively. The black dashed lines indicate 

λ+ 
z = 0 . 5 δ+ . 
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Fig. 3. Comparison between the original u + field a and the FFT-based large-scale 

u + field b at y + = 92 for the DNS1 dataset. 
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eld ( a ) and the corresponding large-scale field obtained by FFT 

 b ) at y + = 92 ( 3 . 9 R e τ
1 / 2 ) for DNS1. The color contour represents

he streamwise fluctuating velocity u + . The high- and low-speed 

ones are well captured by the large-scale field. The large-scale 

eld obtained at the outer region will be used as a reference for 

he interactive POD. 

.2. Scale separation based on interactive POD 

Proper orthogonal decomposition (POD) provides a set of low- 

ank bases for a high/infinite-dimensional dynamical system. These 

ases are optimal for the turbulent kinetic energy contributions in 

he sense of L 2 (2-norm). The POD technique has been widely uti- 

ized in different fields of research. It was first applied to study 

urbulent flows by Lumley [52] and reviewed by Berkooz [53] . The 

dea of POD is to extract prominent modes associated with high 

nergy and containing large-scale coherent structures in turbulent 

ows, thereby achieving a mode reduction from full dimensional 

urbulence to a low-dimensional model. The decomposition gen- 

rates a group of orthogonal flow modes, which are ordered with 

espect to their contributions to the turbulent kinetic energy. This 

ethod was applied to examine the possible self-similarity of the 

arge-scale motions in turbulent pipe flow [33] . Compared with the 

cale separation based on FFT, POD can obtain coherent structures 

y coupling all three velocity components. 

In this work, an interactive POD method is proposed to exam- 

ne the outer-inner interaction. Different from the extended POD 

sed to analyze the local energy contribution to the whole veloc- 

ty field [ 54 , 55 ], interactive POD reconstructs the near-wall large 
4 
cales using the large-scale modes extracted from the outer region. 

he wall-normal location in the outer region is estimated from the 

ormula y + = 3 . 9 R e τ
1 / 2 , which is deduced from the outer peak of 

he streamwise premultiplied energy spectra according to Mathis 

t al. [ 49 , 50 ]. The location is consistent with the nominal midpoint

f the logarithmic region under high-Reynolds-number turbulence. 

owever, Wang et al. [9] used y + = 100 instead of 3 . 9 R e τ
1 / 2 as

he reference location for evaluating outer footprints, and they pro- 

ided plenty of evidences to demonstrate the small scales are uni- 

ersal under the condition of y + = 100 . This value is also con- 

istent with the smallest attached eddy size given by Perry and 

hong [56] . In the present work, our objective is to investigate the 

nfluences of the outer large scales on the inner small scales, we 

till use the location deduced from y + = 3 . 9 R e τ
1 / 2 when analyz- 

ng the outer-inner interactions. Therefore, the outer reference lo- 

ation is approximately equal to 92 and 123 for DNS1 and DNS2, 

espectively. Snapshot POD [57] was adopted in the present work, 

nd the correlation matrix between individual snapshots was cal- 

ulated [58] . All three velocity components were used, and each 

omponent was normalized by its root-mean-square (RMS) value 

o eliminate the magnitude difference for the correlation matrix. 

he reconstructed field was multiplied by its RMS to recover the 

ull information. The step-by-step procedure of interactive POD is 

iven as follows. 

i) Select the velocity field at y + 
re f 

= 3 . 9 R e τ
1 / 2 as the outer refer-

ence field u 

+ 
re f 

. The vector field u 

+ contains all three compo- 

nents: u 

+ = [ u + , v + , w 

+ ] . 
ii) Separate the reference streamwise velocity fluctuations ( u + 

re f 
) 

into large-scale and small-scale fluctuations using the spectral 

filter introduced in Sec. 2.1. The FFT-based large-scale field will 
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Fig. 4. a Correlation coefficient R between the FFT-based large-scale streamwise velocity field and the POD reconstructed streamwise velocity field as a function of the 

accumulative energy for R e τ = 550 at y + = 92. The maximum R is achieved at 46% relative energy. b Large-scale structure reconstructed by POD for DNS1. The contour 

represents the streamwise velocity u + . 
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Fig. 5. Premultiplied energy spectra of the streamwise velocity as a function of the 

mode number at y + = 123 for R e τ = 10 0 0 . a Streamwise spectra, the blue contours 

represent k x φ. b Spanwise spectra, and the blue contours represent k z φ. The top 

horizontal axis denotes the cumulative POD energy, and the bottom horizontal axis 

denotes the mode number. (For interpretation of the references to color in this fig- 

ure legend, the reader is referred to the web version of this article.) 
be used as a benchmark for comparison with the POD-based 

large-scale field. 

ii) Normalize the reference field using its RMS value to eliminate 

the energy difference among velocity components; the resul- 

tant velocity field is denoted ˜ u 

+ 
re f 

. 

v) Decompose the normalized reference field ˜ u 

+ 
re f 

using snap- 

shot POD [57] , and obtain the entire coupled modes. Estimate 

the correlation coefficient R of the streamwise velocity ( u + ) 
between the FFT-based large-scale field and the field recon- 

structed with the first n POD modes. The large-scale modes of 

outer layers �+ 
OL 

are truncated at the maximum of R . 

v) Normalize the inner velocity at y + by its RMS, and project it 

onto the outer large-scale modes �+ 
OL 

; then, reconstruct the 

inner large-scale field u 

+ 
L 
( y + ) . Compute the small-scale field 

u 

+ 
S 
( y + ) by subtracting this large-scale field from the raw fluc- 

tuation velocity field as u 

+ 
S 

= u 

+ − u 

+ 
L 

. 

It is worth noting that the interactive POD is only applied in the 

egion y + ≤ y + 
re f 

. The scale information of the reconstructed field is 

etermined from the R in step (iv) because POD cannot provide the 

cale information of modes. Figure 4 a shows the correlation coeffi- 

ient R as a function of the accumulative energy for Reτ = 550 and 

 

+ = 92. R exhibits a linear increase with increasing mode num- 

er (accumulative energy) and achieves a maximum at 46% en- 

rgy. Therefore, the large-scale modes �+ 
OL 

are selected as the first 

6% energetic POD modes. For DNS2, this value is 37% . Note that 

he POD modes may contain mixed frequencies when the energies 

f different frequencies are comparable to each other. To examine 

he POD-based scale separation, the premultiplied energy spectra 

f the streamwise velocity of all the POD modes at y + = 123 for 

 e τ = 10 0 0 are presented in Fig. 5 . Figure 5 a shows the streamwise

pectra, and Fig. 5 b shows the spanwise spectra. It is clear from 

his figure that the scales λ+ 
x and λ+ 

z of the POD modes decrease 

s the mode number increases, although there is an obvious fre- 

uency mixing phenomenon. The dominant scales of the first 37% 

nergetic modes (to the left of the vertical dashed lines) present 

ood agreement with λ+ 
x > δ+ and λ+ 

z > 0 . 5 δ+ . These results indi- 

ate that the modes �+ 
OL 

selected in step (iv) can be used to recon- 

truct the large-scale motions. However, there are still small scales 

n the energetic modes, which is why the instantaneous large-scale 

treamwise velocity fluctuations reconstructed by POD ( Fig. 4 b) are 

ot as smooth as those from FFT ( Fig. 3 b). 

The outer large-scale modes �+ 
OL 

are used to construct the in- 

er large-scale field. Then, the small-scale fluctuations are obtained 

y subtracting this large-scale field from the raw fluctuation veloc- 

ty field. This is the core idea of interactive POD. Similar to the 

cale separation based on FFT, the large-scale component makes 
5 
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Fig. 6. Large-scale and small-scale contributions to streamwise turbulent kinetic energy u 2+ a and Reynolds stress 〈−(u v ) + 〉 b for DNS2. The trends for DNS1 and DNS2 are 

similar. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.) 
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 significant energy contribution in the outer region. In contrast, 

he small-scale fluctuations account for the majority of the near- 

all peak, and their energy diminishes to zero at the edge of the 

oundary. 

. Reynolds shear stress statistics 

Figure 6 shows the large-scale and small-scale contributions 

o streamwise turbulent kinetic energy 〈 u 2+ 〉 ( a ) and to Reynolds 

tress 〈−(u v ) + 〉 ( b ). The black, red and blue curves represent the 

ontributions of the original data, large scales and small scales, 

espectively. The result of Fig. 6 a is very similar to the result of

arusic et al. [7] , where the small-scale contribution to 〈 u 2+ 〉 
s primarily located in the near-wall region and the outer layer 

s dominated by the outer large scales. For the Reynolds shear 

tress 〈−(u v ) + 〉 , in the near-wall region, the Reynolds stress of 

mall scales (blue curve) is much larger than that of large scales 

red curve). As y + increases, the contribution of the large scales 

radually surpasses that of the small scales in the outer region. 

he results for DNS1 have similar trends. The contributions to the 

eynolds stress of large and small scales share the same properties 

s those to 〈 u 2+ 〉 . 
To further investigate the Reynolds shear stress contributions of 

arge and small scales, Fig. 7 shows the weighted joint probability 

ensity function (PDF) of u + and v + at different wall-normal loca- 

ions for DNS1 and DNS2. The contour lines represent the contri- 

ution to 〈−(u v ) + 〉 , and u + and v + are scaled by u + rms and v + rms , 

espectively. Regardless of the scale, the PDFs show strong Q2 

 u + < 0 , v + > 0 , ejection) and Q4 ( u + > 0 , v + < 0 , sweep) events,

emonstrating that the positive streamwise velocities are associ- 

ted with the negative wall-normal velocities or vice versa. The 

 2 and Q 4 events are responsible for transporting high momen- 

um fluid towards the wall and low momentum fluid away from 

t [32] . Thus, these events correspond to a positive contribution to 

he Reynolds shear stress 〈−(u v ) + 〉 . However, there are some dif- 

erences between the large scales and small scales. For the large 

cales, the PDFs are almost symmetrically distributed about the 

iagonal line in quadrants 2 and 4, and the shapes are simi- 

ar across the different wall-normal locations for the present two 

eynolds numbers. This implies that the large-scale contribution 

o the Reynolds shear stress presents a self-similar distribution. 

or the small-scale Reynolds shear stress, more interesting distri- 

utions are presented. In the near-wall region ( y + = 12 ), the PDFs 

lso show strong Q2 and Q4 events, but the shape of the contours 

s completely different from that of the large scales because the 

ange of the normalized wall-normal component v + is much larger 
6 
han that of streamwise u + . This may be caused by the counter- 

otating streamwise vortices identified as dominant vortical struc- 

ures in the near-wall region [59] . When increasing y + to 3 . 9 R e τ 1 / 2 ,

he PDF of small scales becomes symmetric about the diagonal line 

f the second and fourth quadrants. Moreover, the large scales have 

ittle contributions to the Q1 ( u + > 0 , v + > 0 , outward interaction)

nd Q3 ( u + < 0 , v + < 0 , wallward interaction) events compared to 

he small scales [32] . 

. Inner-outer interactions 

In the paper by Talluru et al. [28] , a combination of cross-wire 

robes with an array of flush-mounted skin-friction sensors was 

sed to study all three velocity component modulation effects, and 

hey found that the small-scale spanwise and wall-normal fluctu- 

tions and the instantaneous Reynolds shear stress are modulated 

n a very similar manner as the streamwise fluctuations at high 

eynolds numbers. Using interactive POD in the present work, both 

he superposition and modulation effects are investigated for all 

hree velocity components and Reynolds stress 〈−(u v ) + 〉 . 

.1. Superposition effect 

The large-scale field u + 
L 

reconstructed by the interactive POD 

epresents the ’footprint’ of the outer large-scale structures on 

he near-wall turbulence. The superposition effect is examined 

y correlating the inner large scales with the outer larger scales. 

igure 8 shows the normalized streamwise correlation of large- 

cale streamwise fluctuations u + 
L 

at different wall-normal locations 

ith those of the reference location for different R e τ , where the 

eference location is 92 for DNS1 (a) and 123 for DNS2 (b). The 

orizontal axis represents the streamwise distance r + x for correla- 

ion. From this figure, the peak correlation level (indicated by filled 

ircles) increases with increasing y + , and the separation distance 

 

+ 
x of the maximum increases with decreasing y + . These results 

eflect the inclined large-scale coherent structures. In Fig. 8 a, the 

eak (indicated by filled circles) correlation level is greater than 

.6 even though y + is down to the viscous sublayer, as y + = 5 . In

ig. 8 b, the peak value at y + = 5 is approximately close to 0 . 8 . 

To describe the superposition effect of all three velocity com- 

onents, we define the superposition coefficient α and mean in- 

lination angle θL of large scales as proposed by Mathis et al. 

50] . The parameter α is chosen as the maximum of the cross- 

orrelation, as indicated by the filled circles in Fig. 8 , that is, 

u = max { R [ u + 
L 
( y + ) , u + 

L 
( y + 

re f 
) ] } , αv = max { R [ v + 

L 
( y + ) , v + 

L 
( y + 

re f 
) ] } and 

w 

= max { R [ w 

+ 
L 
( y + ) , w 

+ 
L 
( y + 

re f 
) ] } . The parameter θL is calculated by 



H. Wang and Q. Gao Theoretical and Applied Mechanics Letters 11 (2021) 100222 

Fig. 7. Reynolds shear stress weighted joint PDF of u + and v + at different wall-normal locations for DNS1 a , b and DNS2 c , d . Left panels a , c show the large-scale field, and 

right panels b , d show the small-scale field. All values are normalized by u + rms or v + rms and weighted by the Reynolds shear stress −(u v ) + . The positive contour levels (solid 

lines) are from 0.01 to 0.1 in a step of 0.03. The negative contour levels (dashed lines) are from –0.04 to –0.01 in a step of 0.03. 

Fig. 8. Streamwise correlation of large-scale streamwise fluctuations u + 
L 

at y + = 5 (blue), 12 (green), and 44 (purple) with those at the reference wall-normal location ( y + = 92 

for DNS1 and y + = 123 for DNS2); a and b present the results for DNS1 and DNS2, respectively. r + x represents the streamwise distance from the correlation center. The red 

curve represents the streamwise autocorrelation at the reference location. The filled circles indicate the position of the maximum correlation coefficient R . (For interpretation 

of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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rctan ( �y/ �x ) , where �y is the wall-normal distance and �x is 

he streamwise shift at the maximum of the correlation. The su- 

erposition coefficient α and inclination angle θL of all three ve- 

ocity components for DNS2 are shown in Fig. 9 . The large-scale 

elocity u + 
L 

displays the strongest superposition effect in the near- 

all region, and all the α values are greater than 0.6, even very 

lose to the wall. The inclination angle is almost constant, with 

L ≈ 13 ◦, in the region of y + < 30 and then rapidly increases with 

ncreasing wall-normal location. The rapid increase may be caused 

y the large-scale hairpin vortex whose inclination angle from the 

 -direction increases with distance from the wall [17] . Another rea- 

on may be the increasing correlated localized small-scale struc- 

ures [50] . Another behavior shown in Fig. 9 is that the superposi- 

s

7 
ion coefficients of v + 
L 

and w 

+ 
L 

are smaller than that of u + 
L 

, and the

nclination angles are slightly larger than that of u + 
L 

. To determine 

he reasons, we also plotted the premultiplied energy spectra of v + 
nd w 

+ as a function of mode number (not shown in this paper) 

nd found that the scales of v + and w 

+ are smaller than that of 

 

+ . 

.2. Amplitude modulation 

The amplitude modulation of the near-wall structures by the 

arge scales is investigated in this part. First, we explore the spatial 

istribution of the small-scale u + events on the condition of large- 

cale positive and negative u + events. Second, the small-scale am- 
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Fig. 9. Superposition coefficient α a and inclination angle θL b of the large scales as a function of the wall-normal location for DNS2. The velocity components u + , v + and 

w 

+ are plotted by square, circle and diamond symbols. 

Fig. 10. Example at y + = 5 of large-scale u + fluctuation and small-scale u + events 

with αS = 1.5. The contour represents the large-scale u + 
L 

, and the red and blue 

curves are the isocontour lines of αL = ±0 . 5 . The black curves represent the iso- 

contour lines of the small-scale u + events. The illustrations in a and b are for DNS1 

and DNS2, respectively. (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 
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litudes of all three velocity components and Reynolds shear stress 

re conditionally computed on the value of the large-scale inten- 

ity. 

The high and low momentum regions in the small-scale field 

re defined as u + 
S, y + > αS · RMS( u + 

S, y + ) and u + 
S, y + < −αS · RMS( u + 

S, y + ) , 

espectively. Additionally, the threshold used to identify the posi- 

ive and negative u + events in the large-scale field is denoted αL 

 u + 
L, y + > αL · RMS( u + 

L, y + ) and u + 
L, y + < −αL · RMS( u + 

L, y + ) ). In this work, 

L is fixed to 0.5, and αS is set to 1.5. Figure 10 a and 10 b gives an

xample of an instantaneous large-scale field at y + = 5 for DNS1 

nd DNS2. The contour represents the large-scale u + 
L 

, and the red 

nd blue curves are the isocontour lines of α = ±0 . 5 . The black
L 

8 
urves represent the isocontour lines of small-scale u + events with 

S = 1.5. It is obvious that the small scales in the large-scale posi- 

ive u + field are more visible than those in the large-scale negative 

 

+ field. 

The coupled large scales of all three components are obtained 

sing the interactive POD method. This means that the relation- 

hip between large and small scales can be explored not only for 

he u + fluctuation but also for the v + , w 

+ and even Reynolds stress 

(u v ) + fields. These relationships are estimated by computing the 

mall-scale amplitude conditioned on the value of the large-scale 

ntensity, which is the same as the method proposed by Ganap- 

thisubramani et al. [4] . The simple procedure is given as follows. 

i) The original velocity field is separated into a large-scale field 

( u + 
L 
, v + 

L 
, w 

+ 
L 

) and a small-scale field ( u + 
S 
, v + 

S 
, w 

+ 
S 

) using interac-

tive POD. 

ii) The large-scale u + fluctuation is divided into many equally 

spaced bins with a spacing of d = 0.2 from u + 
L 

= −6 to u + 
L 

= 6 .

The parameters in this step are the same as those in Ganap- 

athisubramani et al. [4] . 

ii) The spatial points P are marked if the value of u + 
L 

is in the

range from u + 
L 

− d to u + 
L 

+ d. The wide bin size can smooth the 

statistical results. 

v) The sum of the square of the small-scale signals is computed 

over the spatial points P , which represents the amplitude con- 

ditioned on the strength of the large-scale u + fluctuations. All 

the variances in u + 
S 

, v + 
S 

, w 

+ 
S 

and Reynolds stress (u v ) + 
S 

are esti-

mated based on the same formula as follows: 

〈
ε 2+ 

S 

(
u 

+ 
L , y 

+ )〉 = 

∑ 

ε 2+ 
S ( y + ) | u + 

L ( y 
+ ) 

N P 

. (1) 

Here, the parameter N P is the total number of points in set 

 , and ε S represents the small-scale variables. The small-scale 

eynolds shear stress −(u v ) + 
S 

is approximated by the product 

u + 
S 

v + 
S 

. 

i) Step (iv) is repeated for all the bins of u + 
L 

and crosses all the 

wall-normal locations. 

To compare the amplitude modulation among different velocity 

omponents, the amplitude of small scales ε 2+ 
S 

is redefined as the 

elative difference between 〈 ε 2+ 
S 

( u + 
L 
, y + ) 〉 and 〈 ε 2+ 

S 
( u + 

L 
= 0 , y + ) 〉 , 

hich was proposed by Ganapathisubramani et al. [4] . The defi- 

ition is given as 

ε 2+ 
S 

(
u 

+ 
L , y 

+ ) = 

〈
ε 2+ 

S 

(
u 

+ 
L 
, y + 

)〉
−

〈
ε 2+ 

S 

(
u 

+ 
L 

= 0 , y + 
)〉

〈
ε 2+ 

S 

(
u 

+ 
L 

= 0 , y + 
)〉 . (2) 

If �ε 2+ 
S 

is larger than zero, then the amplitude of the small 

cales is amplified by the large scales compared to u + 
L 

= 0. Oth- 
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Fig. 11. Plots of �u 2+ 
S 

( red ), �v 2+ 
S 

( blue ), �w 

2+ 
S 

( green ) and �(u v ) 2+ 
S 

( purple ) as a function of the large-scale u + fluctuation for DNS1 a , b and DNS2 c , d . The wall-normal 

location of the left panel is 5, and that of the right panel is y + = 12. (For interpretation of the references to color in this figure legend, the reader is referred to the web 

version of this article.) 
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rwise, the amplitude of the small scales is attenuated. Be- 

ause the superposition components have been removed from 

he near-wall small scales, the small scales ε + 
S 
( y + ) can be read 

s ε ∗( y + ) { 1 + βε u 
+ 
OL 

} according to the MMH model [50] , where 

 

∗( y + ) represents the universal signals without superposition and 

odulation, and βε is the amplitude modulation coefficient cor- 

esponding to ε . Thus, �ε 2+ 
S 

( u + 
L 
, y + ) is approximately equal to 

 ( 1 + βε u 
+ 
OL 

) 
2 − 1 ] . 

Figure 11 shows the amplitude modulation of the small-scale 

tructures by the large scales at near-wall locations ( y + = 5 and 

2) for DNS1 and DNS2. The red, blue, green and purple curves 

epresent the relative variance of small scales �u 2+ 
S 

, �v 2+ 
S 

, �w 

2+ 
S 

nd �(u v ) 2+ 
S 

, respectively. The sample number in each bin is rela-

ive to the bin size and the value of u + 
L 

. A larger absolute value of

 

+ 
L 

will result in a reduction of the sample number. Therefore, the 

urves at the two ends are distorted by inadequate samples. In the 

ear-wall region, �2+ 
S 

increases as u + 
L 

increases, and the increase 

n the variance of Reynolds stress −(u v ) + is much faster than that 

f the other velocity components. The increasing rate (slope of the 

urves) of velocity u + seems to be the lowest among all four curves 

or both DNS1 and DNS2. These phenomena indicate that the outer 

arge-scale structures have a significant influence on the near-wall 

eynolds stress rather than on the other velocity components. Even 

mong the velocity components, the amplitude modulation effect 

n the small-scale wall-normal velocity v + is more obvious than 

hat on the streamwise velocity u + . A possible reason is that the 

ear-wall region is dominated by paired streamwise vortices. Fur- 

her exploration of the link between coherent structures and mod- 

 

9 
lations is of great significance. By increasing y + to 12, it is ex- 

ected that the slopes of all the curves will become smaller than 

hose at y + = 5 because of the modulation reduction. The asym- 

etric and nonlinear trends are, however, more obvious [4] . 

.3. Frequency modulation 

Frequency modulation also exists in wall turbulence [ 4 , 29 ]. Sim- 

ly, in the near-wall region, the frequency of the small-scale fluc- 

uations is attenuated by the negative large-scale fluctuations and 

mplified by the positive large-scale fluctuations. One method to 

stimate the frequency of the signals is to calculate the derivative 

f the phase, which can be deduced from the Hilbert transform. 

owever, similar to the definition for the envelope of the small 

cales, the skewness of the small-scale fluctuations seems to in- 

uence the results [60] . In this work, we adopt the peak-valley 

ounting (PVC) procedure proposed by Ganapathisubramani et al. 

4] to determine the frequency of signals. To investigate the differ- 

nces between the streamwise and spanwise directions, the num- 

er count is performed along these two directions. The procedure 

s the same as that for amplitude modulation except for step iv: 

i) The local maximum or minimum along the streamwise or span- 

wise direction is targeted as one, and the other points are set 

to zero in the small-scale fields. A representative frequency f S , 

which represents the frequency modulation on the condition of 

the strength of the large-scale u + fluctuations, is counted using 

the number of peaks over the spatial points P . The frequencies 

of u + 
S 

, v + 
S 

, w 

+ 
S 

and Reynolds stress (u v ) + 
S 

are estimated based on
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Fig. 12. Plots of � f u,S ( red ), � f v ,S ( blue ), � f w,S ( green ) and � f u v ,S ( purple ) as a function of the large-scale u + fluctuation for DNS1 a , b and DNS2 c , d . The left panels show 

the characteristic frequency in the streamwise direction, while the right panels show the characteristic frequency in the spanwise direction. The dashed line with red symbols 

represents the frequency modulation obtained from the FFT along the spanwise direction. All the wall-normal locations are y + = 12. (For interpretation of the references to 

color in this figure legend, the reader is referred to the web version of this article.) 
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the same formula as follows: 

〈
f S 
(
u 

+ 
L , y 

+ )〉 = 

M S ( y 
+ ) | u + 

L ( y 
+ ) 

N P 

. (3) 

Here, the parameter N P is the total number of points in set P , 

nd M S represents the number of peaks in the small-scale fields. 

imilar to the relative amplitude �2+ 
S 

, the characteristic frequency 

s redefined as 

f S 
(
u 

+ 
L , y 

+ ) = 

〈
f S 
(
u 

+ 
L 
, y + 

)〉
−

〈
f S 
(
u 

+ 
L 

= 0 , y + 
)〉

〈
f S 
(
u 

+ 
L 

= 0 , y + 
)〉 . (4) 

In the spanwise direction, the scale of the streamwise fluctu- 

tions u + can be separated using the spectral filter method due 

o the existence of sufficient scale separation, as introduced in Sec 

.1. The characteristic frequency based on the fields from spectral 

ecomposition can also be estimated from Eqs. (3) and ( 4 ). The re-

ults will be compared with those of POD. 

Figure 12 shows the frequency modulation effect along the 

treamwise (left panels) and spanwise (right panels) directions for 

NS1 (a, b) and DNS2 (c, d). The x -axis represents the outer large-

cale streamwise fluctuation, and the curves with different colors 

epresent the characteristic frequency of different velocity compo- 

ents. Note that the dashed lines with red symbols represent the 

requency modulation of small-scale u + obtained from FFT along 

he spanwise direction. All the results are estimated at y + = 12. 

n the streamwise direction, the characteristic frequency increases 

ith increasing large-scale fluctuation, although the curves at 

 e τ = 550 display an unexpected local minimum in the region of 
10 
 

+ 
L 

> 1 . This phenomenon may be caused by insufficient scale sep- 

ration at low Reynolds numbers and disappears in Fig. 12 c and 

2 d for R e τ = 10 0 0. Compared with the amplitude modulations, the 

requency modulations present a more similar behavior among all 

hree velocity components and the Reynolds shear stress. The fre- 

uency modulation along the streamwise direction is consistent 

ith the result of Ganapathisubramani et al. [4] . However, it is in- 

eresting to note that the characteristic frequency in the spanwise 

irection displays a weak trend across the entire range of u + 
L 

for 

he interactive POD result, which implies that outer large scales 

ave limited influence on the spanwise frequency of small scales in 

he near-wall region. In particular, the dashed red lines calculated 

rom the spectral filter method present a decreasing trend with in- 

reasing large-scale fluctuations. There are obvious differences in 

he streamwise and spanwise directions for frequency modulation. 

In the work of Ganapathisubramani et al. [4] , the stream- 

ise velocity acquired in the high-Reynolds-number boundary- 

ayer wind tunnel by hot-wire probes is used to examine the 

nteraction between the large and small scales of the boundary 

ayer. The temporal frequency modulation effect is highest in the 

ear-wall region, and this effect decreases with increasing wall- 

ormal distance. The authors explained that the increase in small- 

cale frequency is caused by a combination of augmented small- 

cale activity and convection at these small scales induced by the 

arge-scale motions. The present results prove that the number of 

mall-scale structures indeed increases in the streamwise direc- 

ion with increasing large-scale streamwise velocity fluctuations. In 

all-bounded turbulence, the convection velocity at large scales is 
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[  
uch higher than that at small scales in the near-wall region del 

lamo and Jiménez [61] . The local high Reynolds number increases 

he local mean shear stress and then generates more small-scale 

tructures in the streamwise direction. However, an opposite fre- 

uency modulation appears in the spanwise direction in which the 

umber of small scales is suppressed by the large-scale velocity. 

ore research is needed to further explain this result. 

. Conclusions 

In this study, we use interactive POD to investigate the inner- 

uter interactions of turbulent channel flows at low Reynolds num- 

ers R e τ = 550 and R e τ = 10 0 0. The spectral filter operation is 

nsuitable for velocity decomposition at relatively low Reynolds 

umbers due to the insufficient scale separation. Instead, the in- 

eractive POD method could be used to extract the footprint of the 

uter large-scale motion in the near-wall region. The outer veloc- 

ty field at y + = 3 . 9 R e τ
1 / 2 is decomposed to obtain the large-scale 

odes �+ 
OL 

. The premultiplied energy spectra of these modes in- 

icate that the selected large-scale modes �+ 
OL 

are indeed associ- 

ted with outer large-scale or very large-scale motions. The veloc- 

ty field in the inner layer is projected onto these modes to recon- 

truct the near-wall large-scale structures. It is worth noting that 
+ 
OL 

is related to the wall-normal position y + . The interaction of 

uter large scales at any wall-normal location with the near-wall 

ycle can be studied using this method. 

The weighted joint PDFs of fluctuations u + and v + for large- 

cale motion and small-scale motion are given as a function of the 

all-normal distance. The large-scale contribution is symmetrically 

istributed in quadrants 2 and 4 and has a similar contour shape. 

he large-scale contribution to −(u v ) + presents a self-similar be- 

avior. The contour of the small-scale contribution shows a varia- 

ion when increasing the wall-normal location. 

The superposition effect is explored by correlating the large- 

cale fluctuations in the near-wall region with those in the outer 

egion. The large superposition coefficient α indicates a high cor- 

elation of the large-scale motions along the wall-normal direction. 

he α values of v + and w 

+ are smaller than that of u + , and the in- 

lination angle θL is larger than that of u + . θL is nearly constant at 

L ≈ 13 ◦ in the near-wall region and then rapidly increases with 

ncreasing wall-normal distance. Furthermore, the correlation of 

mall-scale u + fluctuations at outer locations with those at y + = 5 

s almost zero. These results indicate that the outer large-scale 

tructures can extend to the wall and that the influence of near- 

all structures diminishes rapidly as y + increases. 

The modulation of the small scales by the large scales is also 

nvestigated. The occurrence probability of small-scale structures 

onditioned on a large-scale positive u + event is much higher than 

hat conditioned on a large-scale negative u + event. The ampli- 

udes of small-scale u + , v + , w 

+ and Reynolds stress −(u v ) + are 

omputed conditioned on the value of the large-scale u + intensity. 

lthough all the small scales are modulated in a similar fashion, 

he amplitude modulation of the small-scale −(u v ) + is the greatest 

mong all the components. The Reynolds shear stress in the near- 

all region is more easily controlled by the outer large-scale struc- 

ures. Furthermore, the representative frequency is approximated 

y counting the number of peaks in the streamwise and spanwise 

irections. In the streamwise direction, the small-scale frequency 

s attenuated by the negative large-scale u + fluctuations and am- 

lified by the positive large-scale u + fluctuations. The results of 

 

+ , w 

+ and −(u v ) + are fully consistent with that of u + . However, 

n interesting finding is that the spanwise frequency modulation 

xhibits an opposite trend to the streamwise frequency modula- 

ion. The small-scale frequency in the spanwise direction is atten- 

ated by the positive large-scale u + fluctuations at the present low 
11 
eynolds numbers. Further research is required to explore the rea- 

ons behind this phenomenon. 

eclaration of Competing Interest 

The authors declare that there is no conflict of interest regard- 

ng the publication of this paper. 

cknowledgments 

This work was supported by the National Natural Science 

oundation of China , Basic Science Center Program for “Multi- 

cale Problems in Nonlinear Mechanics” (Grant No. 11988102 ) and 

he National Natural Science Foundation of China (Grant Nos. 

1852204 , 11702302 ) and the National Key R&D Program of China 

Grant No. 2020YFA0405700). 

eferences 

[1] S.J. Kline , W.C. Reynolds , F.A. Schraub , et al. , The structure of turbulent bound-
ary layers, J. Fluid Mech. 30 (1967) 741–773 . 

[2] A.J. Smits , B.J. McKeon , I. Marusic , High-Reynolds number wall turbulence, 

Annu. Rev. Fluid Mech. 43 (2011) 353–375 . 
[3] N. Hutchins , I. Marusic , Large-scale influences in near-wall turbulence, Philos. 

Trans. A Math. Phys. Eng. Sci. 365 (2007) 647–664 . 
[4] B. Ganapathisubramani , N. Hutchins , J.P. Monty , et al. , Amplitude and fre-

quency modulation in wall turbulence, J. Fluid Mech. 712 (2012) 61–91 . 
[5] S. Duvvuri , B.J. McKeon , Triadic scale interactions in a turbulent boundary 

layer, J. Fluid Mech. 767 (2015) 11 . 
[6] C.R. Smith , S.P. Metzler , The characteristics of low-speed streaks in the 

near-wall region of a turbulent boundary-layer, J. Fluid Mech. 129 (1983) 

27–54 . 
[7] I. Marusic , R. Mathis , N. Hutchins , High Reynolds number effects in wall tur-

bulence, Int. J. Heat Fluid Flow 31 (2010) 418–428 . 
[8] R.F. Hu , X.J. Zheng , Energy contributions by inner and outer motions in turbu-

lent channel flows, Phys. Rev. Fluids 3 (2018) 23 . 
[9] L. Wang, R. Hu, X. Zheng, Inner-outer decomposition and universal near-wall 

motions in turbulent channels, arXiv e-prints (2020) arXiv: 2007.15740 . 

[10] J.M. Hamilton , J. Kim , F. Waleffe , Regeneration mechanisms of near-wall turbu- 
lence structures, J. Fluid Mech. 287 (1995) 317–348 . 

[11] J. Jiménez , A. Pinelli , The autonomous cycle of near-wall turbulence, J. Fluid
Mech. 389 (1999) 335–359 . 

[12] W. Schoppa , F. Hussain , Coherent structure generation in nearwall turbulence, 
J. Fluid Mech. 453 (2002) 57–108 . 

[13] Y.S. Wang , W.X. Huang , C.X. Xu , On hairpin vortex generation from near-wall

streamwise vortices, Acta Mech. Sin. 31 (2015) 139–152 . 
[14] Q. Gao , C. Ortiz-Dueñas , E.K. Longmire , Analysis of vortex populations in tur-

bulent wall-bounded flows, J. Fluid Mech. 678 (2011) 87–123 . 
[15] C.D. Tomkins , R.J. Adrian , Spanwise structure and scale growth in turbulent 

boundary layers, J. Fluid Mech. 490 (2003) 37–74 . 
[16] B. Ganapathisubramani , E.K. Longmire , I. Marusic , Characteristics of vortex 

packets in turbulent boundary layers, J. Fluid Mech. 478 (2003) 35–46 . 

[17] R.J. Adrian , C.D. Meinhart , C.D. Tomkins , Vortex organization in the outer re-
gion of the turbulent boundary layer, J. Fluid Mech. 422 (20 0 0) 1–54 . 

[18] R.J. Adrian , Stochastic estimation of conditional structure: a review, Appl. Sci. 
Res. 53 (1994) 291–303 . 

[19] L. Sirovich, Dynamics of coherent structures in wall bounded turbulence, self- 
sustaining mechanisms of wall turbulence(A 98-17710 03-34), Southampton, 

United Kingdom, Computational Mechanics Publications(Advances in Fluid Me- 

chanics Series 15 (1997) 333–364. 
20] L.H.O. Hellstrom , A. Sinha , A.J. Smits , Visualizing the very-large-scale motions 

in turbulent pipe flow, Phys. Fluids (2011) 23 . 
[21] K. Kim , R. Adrian , Very large-scale motion in the outer layer, Phys. Fluids 11

(1999) 417 . 
22] B.J. Balakumar , R.J. Adrian , Large- and very-large-scale motions in channel and 

boundary-layer flows, Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 365 (2007) 

665–681 . 
23] C.Y. Wang , Q. Gao , J.J. Wang , et al. , Experimental study on dominant vortex

structures in near-wall region of turbulent boundary layer based on tomo- 
graphic particle image velocimetry, J. Fluid Mech. 874 (2019) 426–454 . 

24] J.C. del Álamo , J. Jiménez , Linear energy amplification in turbulent channels, J. 
Fluid Mech. 559 (2006) 205–213 . 

25] A .A . Townsend , Equilibrium layers and wall turbulence, J. Fluid Mech. 11 (1961)
97–120 . 

26] A .A . Townsend , The Structure of Turbulent Shear Flow, Cambridge University 

Press, 1980 . 
27] I. Marusic , R. Mathis , N. Hutchins , Predictive model for wallbounded turbulent 

flow, Science 329 (2010) 193–196 . 
28] K.M. Talluru , R. Baidya , N. Hutchins , et al. , Amplitude modulation of all three

velocity components in turbulent boundary layers, J. Fluid Mech. 746 (2014) . 

https://doi.org/10.13039/501100001809
https://doi.org/10.13039/501100001809
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0001
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0001
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0001
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0001
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0001
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0002
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0002
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0002
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0002
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0003
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0003
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0003
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0004
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0004
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0004
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0004
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0004
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0005
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0005
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0005
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0006
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0006
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0006
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0007
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0007
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0007
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0007
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0008
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0008
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0008
http://arxiv.org/abs/2007.15740
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0010
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0010
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0010
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0010
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0011
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0011
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0011
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0012
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0012
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0012
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0013
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0013
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0013
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0013
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0014
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0014
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0014
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0014
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0015
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0015
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0015
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0016
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0016
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0016
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0016
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0017
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0017
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0017
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0017
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0018
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0018
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0020
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0020
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0020
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0020
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0021
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0021
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0021
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0022
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0022
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0022
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0023
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0023
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0023
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0023
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0023
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0024
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0024
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0024
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0025
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0025
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0026
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0026
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0027
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0027
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0027
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0027
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0028
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0028
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0028
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0028
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0028


H. Wang and Q. Gao Theoretical and Applied Mechanics Letters 11 (2021) 100222 

[  

[  

[  

[  

[  

[  

[

[

[  

[  

[  

 

[

[  

[  

[  

[  

[  

[

[  

[

[  

[  

[

[  

[

[

[

[

[

29] W.J. Baars , K.M. Talluru , N. Hutchins , et al. , Wavelet analysis of wall turbulence
to study large-scale modulation of small scales, Exp. Fluids 56 (2015) 1–15 . 

30] L. Agostini , M.A. Leschziner , On the influence of outer large-scale structures on
near-wall turbulence in channel flow, Phys. Fluids 26 (2014) 23 . 

[31] G. Lehnasch, J. Jouanguy, J.P. Laval, et al., POD Based Reduced-Order Model 
for Prescribing Turbulent Near Wall Unsteady Boundary Condition, 14, 

Springer, Dordrecht, 2011, pp. 301–308. of ERCOFTAC Series, doi: 10.1007/ 
978- 90- 481- 9603- 6- 31 . 

32] L.H.O. Hellstrom , A.J. Smits , The energetic motions in turbulent pipe flow, Phys.

Fluids 26 (2014) 10 . 
33] L.H.O. Hellstrm , I. Marusic , A.J. Smits , Self-similarity of the largescale motions

in turbulent pipe flow, J. Fluid Mech. 792 (2016) 1–12 . 
34] S. Deng , C. Pan , J. Wang , et al. , On the spatial organization of hairpin packets

in a turbulent boundary layer at low-to-moderate Reynolds number, J. Fluid 
Mech. 844 (2018) 635–668 . 

35] W.J. Baars , N. Hutchins , I. Marusic , Spectral stochastic estimation of high-

-reynolds-number wall-bounded turbulence for a refined inner-outer interac- 
tion model, Phys. Rev. Fluids (2016) 1 . 

36] W.J. Baars , I. Marusic , Data-driven decomposition of the streamwise turbulence 
kinetic energy in boundary layers. Part 1. Energy spectra, J. Fluid Mech. 882 

(2020) 40 . 
37] W.J. Baars , I. Marusic , Data-driven decomposition of the streamwise turbulence 

kinetic energy in boundary layers. Part 2. Integrated energy and A(1), J. Fluid 

Mech. 882 (2020) 25 . 
38] J. Kim , P. Moin , R. Moser , Turbulence statistics in fully developed channel flow

at low Reynolds number, J. Fluid Mech. 177 (1987) 133–166 . 
39] E. Perlman , R. Burns , Y. Li , et al. , Data exploration of turbulence simulations

using a database cluster, in: Proceedings of the ACM/IEEE Conference on High 
Performance Networking and Computing, SC 2007, November 10-16, 2007, 

Reno, Nevada, Usa, 2007, pp. 1–11 . 

40] Y. Li , E. Perlman , M.P. Wan , et al. , A public turbulence database cluster and ap-
plications to study lagrangian evolution of velocity increments in turbulence, 

J. Turbul. 9 (2008) 1–29 . 
[41] J. Graham , K. Kanov , X.I.A. Yang , et al. , A web services accessible database of

turbulent channel flow and its use for testing a new integral wall model for 
les, J. Turbul. 17 (2016) 181–215 . 

42] B.J. McKeon , J.F. Morrison , Asymptotic scaling in turbulent pipe flow, Philos. 

Trans. R. Soc. Math. Phys. Eng. Sci. 365 (2007) 771–787 . 
43] M. Lee , R.D. Moser , Direct numerical simulation of turbulent channel flow up

to Re τ ≈ 5200, J. Fluid Mech. 774 (2015) 395–415 . 
44] H.-.P. Wang , S.-.Z. Wang , G.-.W. He , The spanwise spectra in wall-bounded tur-

bulence, Acta Mech. Sin. 34 (2018) 452–461 . 
12 
45] H. Abe , H. Kawamura , H. Choi , Very large-scale structures and their effects on
the wall shear-stress fluctuations in a turbulent channel flow up to Re τ= 640, 

J. Fluids Eng. 126 (2004) 835–843 . 
46] K. Iwamoto , N. Kasagi , Y. Suzuki , Dynamical roles of large-scale structures in

turbulent channel flow, Comput. Mech. 4 (2004) 5–10 WCCM VI in conjunction 
with APCOM . 

[47] M. Bernardini , S. Pirozzoli , Inner/outer layer interactions in turbulent bound- 
ary layers: a refined measure for the large-scale amplitude modulation mech- 

anism, Phys. Fluids 23 (2011) 061701 . 

48] G.K.E. Khoury , P. Schlatter , G. Brethouwer , et al. , Turbulent pipe flow: statistics,
re-dependence, structures and similarities with channel and boundary layer 

flows, J. Phys. Conf. Ser. 506 (2014) 012010 . 
49] R. Mathis , N. Hutchins , I. Marusic , Large-scale amplitude modulation of the 

small-scale structures in turbulent boundary layers, J. Fluid Mech. 628 (2009) 
311–337 . 

50] R. Mathis , N. Hutchins , I. Marusic , A predictive inner-outer model for stream-

wise turbulence statistics in wall-bounded flows, J. Fluid Mech. 681 (2011) 
537–566 . 

[51] R.C. Gonzalez , R.E. Woods , Digital Image Processing, 2nd Edition, Pearson, 
2002 . 

52] J.L. Lumley , The structure of inhomogeneous turbulent flows, Atmos. Turbul. 
Radio Wave Propag. (1967) 166–178 . 

53] G. Berkooz , P. Holmes , J.L. Lumley , The proper orthogonal decomposition in the

analysis of turbulent flows, Annu. Rev. Fluid Mech. 25 (1993) 539–575 . 
54] S. Maurel , J. Borée , J. Lumley , Extended proper orthogonal decomposition: ap-

plication to jet/vortex interaction, Flow Turbul. Combust. 67 (2001) 125–136 . 
55] J. Borée , Extended proper orthogonal decomposition: a tool to analyse corre- 

lated events in turbulent flows, Exp. Fluids 35 (2003) 188–192 . 
56] A. Perry , M. Chong , On the mechanism of wall turbulence, J. Fluid Mech. 119

(1982) 106–121 . 

57] L. Sirovich , Turbulence and the dynamics of coherent structures. I - Coherent 
structures. II - Symmetries and transformations. III - Dynamics and scaling, Q. 

Appl. Math. 45 (1987) 561–571 . 
58] M. Sieber , C.O. Paschereit , K. Oberleithner , Spectral proper orthogonal decom- 

position, J. Fluid Mech. 792 (2016) 798–828 . 
59] S.B. Pope , Turbulent Flows, Cambridge University Press, 20 0 0 . 

60] L. Agostini , M. Leschziner , D. Gaitonde , Skewness-induced asymmetric modula- 

tion of small-scale turbulence by large-scale structures, Phys. Fluids 28 (2016) 
015110 . 

61] J.C. del Àlamo , J. Jimènez , Estimation of turbulent convection velocities and 
corrections to Taylor’s approximation, J. Fluid Mech. 640 (2009) 5–26 . 

http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0029
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0029
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0029
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0029
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0029
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0030
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0030
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0030
https://doi.org/10.1007/978-90-481-9603-6-31
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0032
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0032
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0032
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0033
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0033
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0033
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0033
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0034
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0034
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0034
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0034
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0034
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0035
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0035
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0035
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0035
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0036
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0036
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0036
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0037
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0037
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0037
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0038
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0038
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0038
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0038
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0039
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0039
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0039
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0039
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0039
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0040
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0040
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0040
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0040
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0040
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0041
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0041
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0041
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0041
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0041
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0042
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0042
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0042
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0043
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0043
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0043
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0044
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0044
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0044
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0044
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0045
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0045
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0045
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0045
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0046
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0046
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0046
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0046
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0047
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0047
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0047
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0048
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0048
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0048
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0048
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0048
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0049
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0049
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0049
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0049
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0050
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0050
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0050
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0050
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0051
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0051
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0051
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0052
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0052
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0053
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0053
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0053
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0053
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0054
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0054
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0054
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0054
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0055
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0055
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0056
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0056
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0056
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0057
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0057
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0058
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0058
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0058
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0058
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0059
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0059
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0060
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0060
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0060
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0060
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0061
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0061
http://refhub.elsevier.com/S2095-0349(21)00027-1/sbref0061

	A study of inner-outer interactions in turbulent channel flows by interactive POD
	1 Introduction
	2 Descriptions of the DNS data
	3 The scale separation approaches
	3.1 Scale separation based on the spectrum
	3.2 Scale separation based on interactive POD

	4 Reynolds shear stress statistics
	5 Inner-outer interactions
	5.1 Superposition effect
	5.2 Amplitude modulation
	5.3 Frequency modulation

	6 Conclusions
	Declaration of Competing Interest
	Acknowledgments
	References


