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a b s t r a c t 

Dislocation creep at elevated temperatures plays an important role for plastic deformation in crystalline 

metals. When using traditional discrete dislocation dynamics (DDD) to capture this process, we often 

need to update the forces on N dislocations involving ~N 

2 interactions. In this letter, we introduce a 

multi-scale algorithm to speed up the calculations by dividing a sample of interest into sub-domain grids: 

dislocations within a characteristic area interact following the conventional way, but their interaction 

with dislocations in other grids are simplified by lumping all dislocations in another grid as a super 

one. Such a multi-scale algorithm lowers the computational load to ~N 

1.5 . We employed this algorithm 

to model dislocation creep in Al-Mg alloy. The simulation leads to a power-law creep rate in consistent 

with experimental observations. The stress exponent of the power-law creep is a resultant of dislocations 

climb for ~5 and viscous dislocations glide for ~3. 

© 2021 Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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One of the significant mechanism of plastic deformation is the 

ollection motion of a large number of line defects in crystal, so- 

alled dislocations. The collection motion especially with climb 

f dislocations is too long to be accessed by molecular dynamics 

 1 –5 ]. Discrete dislocation dynamics (DDD) is then developed and 

roadly employed to simulate the evolution of dislocation struc- 

ure and their contribution to plastic strain. Van der Giessen and 

eedleman [6] proposed a superposition strategy solving a linear 

lastic boundary value problem, which the boundary conditions 

ary with the motion of dislocations. Superposition of stress, strain 

nd displacement is conducted between dislocation field and com- 

ensated elastic field. DDD studies macroscopic response such as 

auschinger effect [7] , the effect of loading conditions [8] , strain 

ardening [9] and crack growth [ 10 –13 ] through calculating inter- 

ction and motion at each dislocation in microscopic level. There 

re two types of interactions. One is short-range interaction, which 

etermines the reaction of dislocations. Another is long-range in- 

eraction through elastic stress field of dislocations, which mostly 

etermines the collective behavior of the dislocation system [14] . 

he amount of computation among N dislocations are on the or- 

er of N 

2 . In large systems with more dislocations, it is a greater 

hallenge for the rapid increase of computation load. 
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When dislocation creep is involved, the computation load is 

ven prohibitive as we often need to examine the dynamics of dis- 

ocations for a long duration of thermally activated process, which 

s described by a boundary value problem of diffusion equation. 

lthough the boundary conditions of the above problem in Ref. 

15] are that of a single infinite straight dislocation, it is precise 

or low-dislocation densities [16] . Because of their concise and high 

fficiency, these methods are intensively applied to describe dislo- 

ation creep [ 17 –21 ]. Besides bulk diffusion, dislocations can also 

limb through pipe diffusion [ 22 , 23 ]. Although the latter has a 

maller activation energy and vacancies can spread much faster 

han that of bulk diffusion, bulk diffusion is the dominant diffusion 

ode at high temperature and low stress [17] . When materials 

reep under constant stress σ , the steady-state creep strain rate ˙ ε 
nd σ follow ˙ ε ∝ σ n [ 24 –27 ]. Rate-controlling mechanisms includ- 

ng viscous dislocation glide [28] , dislocation pile-up and climbing 

 29 , 30 ], balance between hardening processes and softening pro- 

esses [31] , and dislocation networks [32] were proposed to shed 

ight on the physical meaning of the exponent n . In this letter, we 

im to report a trans-scale computational method to increase both 

fficiency and accuracy at the mean time. This algorithm is then 

pplied to dislocation glide and dislocation climb governed creep 

nder constant stress, to reveal the correlation between n and rate- 

ontrolling mechanisms. 

The long-range dislocation interaction is accounted for through 

heir elastic fields. New dislocation pairs are generated from 
cal and Applied Mechanics. This is an open access article under the CC BY-NC-ND 
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Fig. 1. The multi-scale algorithm. a A schematic of the algorithm to show a sample virtually divided into sub-domain grids. b A close-up view of one grid with multiple 

dislocations, and c the equivalent Burgers vector of b . d – f The stress components σxx , σx y and σyy resulted from all dislocations in the grid shown in b , and g – i the stress 

components introduced by the equivalent dislocation in c . 
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Fig. 2. Exploration about the optimal grid number for the multi-scale algorithm. 

a Sketch of the single crystal specimen with double slip system for the simple ten- 

sile simulation. b The relative computational time as a function of grid number. 

c The stress error (multi-scale algorithm with respect to the full-scale simulation) 

versus grid number. d Optimal grid number as a function of total dislocations. 

o  

s

a  

p

h

w

s

b

rank–Read sources. In two dimensions, this is mimicked by dis- 

rete point sources randomly distributed on discrete slip planes 

hich generate a dislocation dipole with their Burgers vectors 

ligned with the slip plane direction. This occurs when the magni- 

ude of the Peach-Koehler force f on source exceeds a critical value 

nuc b during a time period t nuc , where τnuc is the nucleation stress 

nd b is the Burgers vector. The sign of the dipole is determined 

y the sign of the resolved shear stress along the slip plane. An- 

ihilation of two opposite signed dislocations on a slip system oc- 

urs when they are within a material-dependent critical annihila- 

ion distance L e . Dislocation could glide when f exceeds the resis- 

ance of solute atom τRSS b at a glide velocity v g given as [ 33 , 34 ]

 g = 

1 

B 

( f − τRSS b ) , (1) 

here B is the drag coefficient. The magnitude of the climb veloc- 

ty v c along the plane perpendicular to the Burgers vector is taken 

o be related to the normal stress component σ through the rela- 

ion [35] 

 c = 

D 0 

b 
exp 

(
− Q 

k B T 

)[ 
exp 

(
σV 

k B T 

)
− 1 

] 
, (2) 

here D 0 is the pre-exponential diffusion constant, Q is the acti- 

ation energy for vacancy diffusion, k B T the product of Boltzmann 

onstant and the absolute temperature, and V the characteristic 

olume of a vacancy. Obstacles of intersection slip planes or small 

recipitates to dislocation motion are modeled as points associated 

ith slip planes. Dislocations on the obstacle slip plane get pinned 

s they try to pass through. Obstacles release pinned dislocations 

hen the Peach–Koehler force on the obstacle exceeds τobs b where 

obs is a threshold resistance. 

For a macroscopic sample in our numerical study, we first di- 

ide the sample into small grids, as illustrated in Fig. 1 a. Forces ap-

lied to each dislocation in the central orange grid (see Fig. 1 a) are

reated as following: For a dislocation ‘D’ (the orange dislocation 

n Fig. 1 a), its interaction with dislocations in the grid and those 

n the second-nearest neighbors (the grids in yellow in Fig. 1 a) are 

alculated using conventional dislocation pair interaction. For the 

est of dislocations in further grids, we simplify their interactions 

ith the dislocation ‘D’ by treating all dislocations in one grid as a 

uper dislocation, as demonstrated in Fig. 1 c. The super dislocation 

s located at the center of the grid, and the Burgers vector of the 

uper dislocation is the sum of all the dislocation Burgers vector 

n the grid. The similarity of stress contour between Fig. 1 d–1 f and

ig. 1 g–1 i implies the rationality of this algorithm. 

We model a two-dimensional single crystalline Al-2.2 at% Mg 

lloy with two active dislocation slip systems in a rectangle area 
2 
f width W = 5 μm and length L = 15 μm . So far we only con-

ider edge dislocations in the crystallite. The two slip planes form 

n angle θ = ±36 . 25 ◦ with respect to x -axis (see Fig. 2 a). The slip

lanes are spaced b apart. A reference material is considered which 

as Frank–Read sources randomly distributed on these slip planes 

ith a source density ρsrc = 20 μm 

−2 . Each source is randomly as- 

igned a nucleation strength, τnuc , which follows a Gaussian distri- 

ution of average of 50 MPa and a standard deviation of 15 MPa . 
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Table 1 

Material properties of Al-Mg taken in the DDD, which are estimated at 573 K. 

ν Poisson’s ratio 0.347 [37] 

G Shear modulus 27 GPa [37] 

b Burgers vector 0.286 nm [38] 

D 0 Pre-exponential diffusion constant 1.7 × 10 –4 m 

2 ·s –1 [39] 

Q Vacancy self-diffusion energy 150 kJ/mol [25] 
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Fig. 3. Creep at elevated temperatures (at 573 K) under constant stress. a Stress- 

strain curves of uniaxial tensile simulations at room temperature. b Evolution of 

strain as a function of time. Variation of strain rate as a function of nominal stress 

from c simulation and d experiments for Al-2.2 at% Mg alloy [ 27 , 38 ]. 
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he nucleation time for the sources t nuc is taken to be 10 ns [6] .

he drag coefficient B for dislocation glide is B = 10 −4 Pa · s [ 6 , 36 ].

he obstacles strength is taken to be τobs = 150 MPa and the posi- 

ions are also randomly assigned on these slip lines with a density 

obs = 50 μm 

−2 . The resistance τRSS of dislocations has an aver- 

ge of 9 MPa and a standard deviation about 2 . 5 MPa . The mate- 

ial dependent annihilation distance is chosen as L e = 6 b [6] . The 

ctivation energy for dislocations to climb in Al-2.2% Mg at 573 K 

s roughly 150 kJ/mol, which is consistent with the activation en- 

rgy for vacancy diffusion [25] . Its material properties are shown 

n Table 1 . 

In order to test the efficiency and possible error of the algo- 

ithm, a series of uniaxial tension are simulated. Computation cost 

s obtained for samples of different dislocation source density from 

.5 to 125 μm 

–2 . In Fig. 2 b, the computing CPU time in multi-scale

lgorithm is normalized by the time using conventional algorithm. 

From Fig. 2 b, it is shown that this algorithm can be more 

fficient with more dislocations. For a fixed number of disloca- 

ions, with the increase of grid number, the calculation time de- 

reases first and then increases, implying an optimal grid number. 

n Fig. 2 c, increasing the grid number does not lead to a smaller

elative error. In our two-scale algorithm, dislocations in the grid 

nd those in the second-nearest neighbors are calculated using 

onventional dislocation pair interaction, which is precise. When 

he grid number increases, error from far field grids may be de- 

rease; however, the domain for precise interaction including both 

he nearest and the second nearest neighbors reduces and the cor- 

esponding error increases in contrast to that of bigger grids. The 

ompetition of these two gives rise to an optimal grid number. As- 

uming a homogeneous system with randomly distributed dislo- 

ations, for a total number of dislocations N D and the number of 

rids N G , the number of dislocations in the yellow area in Fig. 1 a

s 9 N D / N G ; the number of super dislocations outside of this region 

s N G − 9 . Thus, the number of interactions (calculation load) S at 

ne simulation step for a single dislocation is roughly estimated as 

S = 9 

N D 
N G 

+ N G − 9 , (3a) 

rom which we derive an optimal number of grids N Go given as 

ollowing 

N Go = 3 N D 
0 . 5 

. (3b) 

In Fig. 2 d, uniaxial tension results conform to the law of 0.5 

ower. Substituting Eq. (3b) into Eq. (3a) and the two-scale algo- 

ithm can reduces the computation load from N D to N D 
0 . 5 . 

We first show in Fig. 3 a stress-strain behavior of uniaxial tensile 

t room temperature. The dislocation simulation algorithm we in- 

roduced before is consistent with conventional dislocation dynam- 

cs simulations. After a quasi-elastic deformation, dislocation nu- 

leation, gliding and annihilation in combination lead to a macro- 

copic yielding in the sample and then apparent strain hardening 

ehavior. With the validity of the method been confirmed, we start 

o simulate dislocation induced creep where long time span and 

arge number of dislocations are needed and it is prohibitive for 

raditional dislocation dynamics simulations. The constant applied 

tress creep simulations, with stresses ranging from 4 to 45 MPa, 

ere carried out to obtain the steady-state creep rate at each 

tress. We show in Fig. 3 b the creep behavior of the same sam-
3 
le subject to three constant stresses. The strain-time evolution at 

ifferent stresses exhibits typical creep characteristics, with an ini- 

ial increasing of strain in instantaneous response to stress, a rough 

inear increasing of strain with respect to time is observed. Follow- 

ng the same routine, we abstract creep rate at different stress in 

ig. 3 c. Similar to experimental observations shown in Fig. 3 d, our 

imulation suggests that the creep rate at constant stress exhibits 

hree distinct stages, each governed by different dislocation mech- 

nisms. 

While it is broadly accepted that steady-state creep strain rate 

˙  and σ often follow ˙ ε ∝ σ n [ 24 –27 ], different dislocation mecha- 

isms give rise to distinct power law exponent n . From our simula- 

ions in Fig. 3 c, we see a creep-rate versus stress exponent closing 

o 5 (4 to 7 generally) in the first stage, and it is suggested that

reep is controlled by dislocation climb [ 29 , 30 , 40 ] and can be ra-

ionalized by dislocation activities shown in Fig. 4 a. From the evo- 

ution of dislocation density in Fig. 4 a, the dislocation density of 

he first stage is dominated by dislocation climb, and leads to a 

islocation density proportional to σ 3 . 9 . For small σ , Eq. (2) can 

e rewritten as 

 c = 

D 0 

b 
exp 

(
− Q 

k T 

)
σV 

k T 
, (4) 
B B 
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Fig. 4. The contribution of different dislocation mechanisms to the total creep rate. 

a The contribution of dislocation climb and dislocation glide to creep and evolution 

of the dislocation density. b A dislocation bypasses an obstacle by climbing. c The 

evolution of creep plastic strain from different dislocation mechanisms under exter- 

nal stress of 37 MPa. d Creep rate as a function of climb rate from 298 K to 773 K 

at a constant stress of 37 MPa. We normalize the climb rate by that at 573 K ( v 573 ). 

w

O

ε

w

t

i  

r

r

c

l

l

d

o

a

a

s

�

w

s

a

m

c

c

f

n

h

i

s

d

s

o

w

b

i

g

i

b

t

I

s

l

D

c

i

A

K

2

C

M

g

a

C

R

 

 

 

 

 

 

 

 

[  

 

 

here climb rate v c varies linearly with stress σ . According to 

rowan equation [41] , we have 

˙  = ρv c b. (5) 

Now we have a rough estimate ˙ ε ∝ σ 4 . 9 , which is in agreement 

ith the stress power at the first stage in Fig. 3 c and 3 d. 

With increasing stress, dislocation climb contributed deforma- 

ion drops and dislocation gliding starts to take over, and now n 

s about 3 in Fig. 3 c and 3 d, which is generally believed to be the

esult of dislocation viscous glide constrained by solute atoms [28] . 

At higher stresses (see Fig. 4 c), while the creep strain from di- 

ect dislocation climb ε c is rather small compared with the total 

reep strain ε t , the creep strain ε c −g from gliding of unpinned dis- 

ocation due to climbing is prominent. The creep stain ε g from dis- 

ocation gliding alone also increases as a result of newly generated 

islocations. As dislocation climb facilitates pinned dislocations to 

vercome the high gliding resistance on the original path, it actu- 

lly now becomes the controlling mechanism at high stress levels, 

s illustrated in Fig. 4 b. 

In general, the creep rate may be approximated as 

˙ ε = 

�ε 
�t g +�t c 

, (6a) 

ince the time to glide �t g is much smaller than the time to climb 

t c , we may have 

˙ ε ≈ �ε 
�t c 

= 

�ε 
l c 

v c , (6b) 

here l c is a characteristic length to climb (see Fig. 4 b). Indeed, we 

ee a linear relationship between the creep rate and the climb rate 

t high stress levels (in Fig. 4 d), implying climb being the governed 

echanism for creep. 

To summarize, given the distinct role played by dislocation 

reep at elevated temperatures in crystalline metals, it is of signifi- 

ance to apply a high fidelity modeling strategy to capture this de- 

ormation behavior. When using traditional discrete dislocation dy- 

amics (DDD), those calculations are usually of long duration and 

igh cost: we often need to update the forces on N dislocations 
4 
nvolving ~N 

2 interactions at each time step. In this letter, a multi- 

cale algorithm is proposed to calculate the interaction between 

islocations more efficiently through super-dislocation in macro- 

cale and conventional approach in micro-scale, and the formula of 

ptimal grid number is given depending on number of dislocations, 

hich leads to a computation load of ~N 

1 . 5 . The good agreement 

etween the calculated and measured power-law creep exponents 

s a result of well captured underlying physics of climb and viscous 

lide. We note, however, that a 2D treatment of dislocation dynam- 

cs sets restrictions on (1) the actual degrees of freedom that flexi- 

le dislocations have, (2) the incorporation of other dislocation ac- 

ivities such as cross-slip, and (3) dislocation-surface interactions. 

t is also interesting to study the stress exponents in polycrystalline 

ystem; compared with single crystal, the interaction between dis- 

ocations located in different grains would be more complex. 
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