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Highlights Impact and implications
� Fetal and neonatal extrahepatic bile ducts have high levels
of hyaluronic acid, located directly around the lumen.

� Damage to the fetal extrahepatic bile duct is followed by
increased hyaluronic acid deposition.

� Biliary atresia remnants show increased hyaluronic acid
deposition around epithelial structures compared
to controls.

� Hyaluronic acid in neonatal extrahepatic bile ducts is
degraded after injury.

� Hyaluronic acid polymers of different sizes have distinct
biological effects on cholangiocytes.
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Biliary atresia is a pediatric cholangiopathy associated with
high morbidity and mortality rates; although multiple etiologies
have been proposed, the fetal response to bile duct damage is
largely unknown. This study explores the fetal pathogenesis
after extrahepatic bile duct damage, thereby opening a
completely new avenue to study therapeutic targets in the
context of biliary atresia.
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Background & Aims: Biliary atresia (BA) is an obstructive cholangiopathy that initially affects the extrahepatic bile ducts (EHBDs)
of neonates. The etiology is uncertain, but evidence points to a prenatal cause. Fetal tissues have increased levels of hyaluronic
acid (HA), which plays an integral role in fetal wound healing. The objective of this study was to determine whether a program of
fetal wound healing is part of the response to fetal EHBD injury.
Methods:Mouse, rat, sheep, andhumanEHBDsampleswere studied at different developmental timepoints.Models includeda fetal
sheep model of prenatal hypoxia, human BA EHBD remnants and liver samples taken at the time of the Kasai procedure, EHBDs
isolated from neonatal rats and mice, and spheroids and other models generated from primary neonatal mouse cholangiocytes.
Results: A wide layer of high molecular weight HA encircling the lumen was characteristic of the normal perinatal but not adult
EHBD. This layer, which was surrounded by collagen, expanded in injured ducts in parallel with extensive peribiliary gland hy-
perplasia, increased mucus production and elevated serum bilirubin levels. BA EHBD remnants similarly showed increased HA
centered around ductular structures compared with age-appropriate controls. High molecular weight HA typical of the fetal/
neonatal ducts caused increased cholangiocyte spheroid growth, whereas low molecular weight HA induced abnormal epithelial
morphology; low molecular weight HA caused matrix swelling in a bile duct-on-a-chip device.
Conclusion: The fetal/neonatal EHBD, including in human EHBD remnants from Kasai surgeries, demonstrated an injury response
with prolonged high levels of HA typical of fetal wound healing. The expanded peri-luminal HA layer may swell and lead to elevated
bilirubin levels and obstruction of the EHBD.

© 2023 The Author(s). Published by Elsevier B.V. on behalf of European Association for the Study of the Liver. This is an open access article under
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction
Biliary atresia (BA) is a devastating disease of newborns pri-
marily affecting the extrahepatic bile ducts (EHBDs). Patients
with BA are born seemingly healthy but develop obstruction of
the EHBD days to weeks after birth followed by the rapid
development of hepatobiliary fibrosis and cirrhosis. Although
the etiology of BA remains under investigation, compelling
evidence points to a prenatal insult.1,2 Several causes of bile
duct injury in BA have been suggested, including environmental
toxins, a viral infection, or a genetic defect; although the pre-
ponderance of data suggest that it is a primary environmental
insult, it is likely that BA is multifactorial.2–4

Regardless of the cause of biliary damage in BA, mecha-
nisms of fetal EHBD repair are not known. Repair of the injured
adult EHBD requires peribiliary glands (PBGs), which are
mucus-producing glands in the submucosa that harbor a
cholangiocyte stem/progenitor cell population. With severe
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damage to the duct, these cells proliferate, migrate towards
denuded luminal surfaces, and differentiate to mature chol-
angiocytes.5,6 Additionally, this may be associated with extra-
cellular matrix (ECM) deposition and scarring or fibrosis, as per
a typical adult wound healing program.

Healing during much of the fetal period, however, is scar-
less, as demonstrated in multiple organs including the heart,
skin, lung, and tendon.7–10 Although not previously studied in
the EHBD, fetal wound healing in general is dominated by
deposition of the glycosaminoglycan hyaluronic acid (HA)
rather than the type I collagen typical of adult wound healing.11

HA is a highly charged polymer consisting of numerous repeats
of D-glucuronic acid and N-acetylglucosamine and is a
component of the normal ECM of the EHBDs at all stages of
development, at least in mice.12 HA is synthesized in high
molecular weight form (HMW, >1 MDa) by hyaluronic acid
synthases (HAS) and degraded from a high to a low molecular
y.
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weight (LMW) form by hyaluronidases (HYAL); a dynamic pro-
cess of production and degradation regulates the average
molecular mass of HA in tissues.13,14 HMW HA is critical in
embryogenesis, facilitating proliferation, cell migration, growth,
and development. Indeed, fetal wound healing is characterized
by the accumulation of HMW HA, which is implicated in scar-
less, regenerative wound healing. In contrast, LMW HA
(<250 kDa) is associated with pro-inflammatory properties and
increased fragmentation and is typical of pathological condi-
tions including adult wound healing.11

We hypothesized that the injured fetal EHBD initially follows
a program of fetal wound healing. The goal of this study was to
define the fetal response to EHBD injury and in particular to
determine whether fetal EHBD repair follows the fetal wound
healing paradigm and whether this has implications for the
development of BA.

Materials and methods

Animals

Handling and care of rodents was carried out according to
protocols that were approved by the University of Pennsylvania
Institutional Care and Use Committee, as per the National In-
stitutes of Health Guide for the Care and Use of Laboratory
Animals (protocol 804862). Animals were selected for use in
experiments by age, regardless of sex. EHBDs were dissected
from the distal end just before entering the pancreas to the
proximal end just below the cystic duct. EHBD and bile sam-
ples from sheep were collected as excess tissue as part of
previously described experiments whereby fetuses were
maintained in utero (“normal”, 20-25 ml/kg/min oxygen) or in an
external biobag and supplied with 14-16 ml/kg/min oxygen
(“hypoxia”).15,16 The handling and care of sheep complied with
the ethical standards of the National Institutes of Health Guide
for the Care and Use of Animals and protocols were approved
by the Institutional Animal Care and Use Committee of The
Children’s Hospital of Philadelphia (protocol #1212).

Human samples

Anonymized human adult EHBD sections were collected as
part of the Human Pancreas Procurement and Analysis Pro-
gram, which was granted exemption by the University of
Pennsylvania Institutional Review Board (protocol 826489).
Participants (seven adults, 23-67 years old) were otherwise
healthy individuals who died unexpectedly, with consent ob-
tained from next of kin. Formalin-fixed paraffin embedded hu-
man EHBD tissue sections from four stillborn fetuses (22, 34,
36, and 39 weeks of gestation), three infants (2, 5, and 6
months old), and 16 BA remnants derived from the porta
hepatis were obtained from the Anatomic Pathology archives of
the Children’s Hospital of Philadelphia, with the approval of the
Institutional Review Board (IRB protocol 1371). Of the BA
remnant sections, nine included epithelial structures. The study
also included formalin-fixed paraffin-embedded samples that
corresponded to the large intrahepatic bile ducts from three
adults with primary sclerosing cholangitis (PSC), obtained from
the pathology archives of the University of Pennsylvania (IRB
protocol 831726).

Further details regarding the materials and methods are
reported in supplementary information.
Journal of Hepatology, Decemb
Results

Fetal and neonatal EHBDs have higher HA than adult ducts,
localized in a peri-luminal ring

We first determined the differences in HA and collagen
composition between the fetal and adult EHBD. As has been
reported for other organs, staining using HA binding protein
showed that HA in the EHBD is high in the fetus and neonate
compared to the adult17 across a range of species (humans,
sheep, rats, and mice) (Fig. 1A and Fig. S1). When we quantified
EHBD HA content biochemically, we found a decrease in
percent HA content from neonates to adults (Fig. 1B). This was
accompanied by a gradual increase in type I collagen content
(Fig. S2). Surprisingly, HA in fetal and neonatal EHBDs was
almost entirely located in a dense layer directly around the
lumen, while collagen was peripheral; as development pro-
gressed, HA around the lumen gradually decreased and was
replaced by collagen, which, as we previously reported and
also observed here, was deposited from the outside in (Fig. 1A,
D and Fig. S2).12 Accordingly, the ratio of collagen to HA
increased over time (Fig. 1C). Second harmonic generation
imaging and Sirius Red staining for collagen showed a clear
distinction between the HA layer and the more peripheral
collagen layer in the fetus, especially in the larger species
(human/sheep) (Fig. 1D,E). Note that the human fetal EHBD
sample was obtained at a gestational age of 36 weeks, whereas
the sheep fetus EHBD sample corresponded to a gestational
age of 121 days (mean gestation in sheep is �147 days)
(Fig. 1D,E). Much of the embryological development of the
EHBD is completed after birth in rodents, comparable with the
last trimester in humans.18–20 This is in line with our HA staining
showing a wide layer of HA in the EHBD wall on postnatal day 1
in rodents resembling the HA staining of the sheep fetus and
human EHBD (Fig. 1A).

Taken together, these data show that ECM content and
distribution in fetal/neonatal EHBDs is fundamentally different
from the adult EHBD, providing a substantially different envi-
ronment – HA is predominant in the fetus, whereas collagen is
predominant in adults – for bile duct regeneration.
Prenatal EHBD damage increases HA

HA is a major mediator of scarless wound healing in the fetus.11

We therefore asked whether there are changes in the HA layer
after EHBD damage. To study fetal EHBD wound healing, we
used a sheep model of extra-uterine gestation (Fig. S3A-C).
After 14-21 days under hypoxic conditions, there were signifi-
cant differences between the EHBDs of sheep maintained ex
utero compared to sheep of the same gestational age that
remained in utero. This included patchy detachment of the
surface epithelium with mural bleeding, increased leukocyte
infiltration, and a statistically significant expansion in the width
of the HA layer directly around the lumen (Fig. 2A, top row, and
Fig. S3D, E). We observed a similar significant increase in the
thickness of the peri-luminal HA layer in biliary remnants
removed at the time of Kasai hepatoportoenterostomy from
patients with BA, compared to controls of similar age (2-6
months of age) (Fig. 2A, middle row), although no increase in
myofibroblasts was found (Fig. S4). In contrast, large bile ducts
of adults with PSC did not show a significant expansion of the
HA layer compared to adult controls (Fig. 2A, lower row).
er 2023. vol. 79 j 1396–1407 1397
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Fig. 1. Normal mammalian fetal and neonatal EHBDs have high HA and low collagen compared to adult EHBDs. (A) HA content of adult or fetal/neonatal human
(GA: 22-39 weeks), sheep (GA: 121 and 128 days), and rat and mouse EHBDs (DOL 1). HA content was defined as % coverage of wall by HA binding protein signal (n >−3
individuals). (B) Concentration of HA (ng) per mg wet weight EHBD. n = 3 homogenates, each containing 2-15 EHBDs. (C) Ratio of HA and collagen in the EHBD,
normalized to DOL 15. (D) Human fetus (GA: 36 weeks) and adult EHBD. SHG imaging includes both forward and backward scatter. (E) Sheep fetus (GA: 121 days) and
adult EHBD. All graphs show mean±SD. Significance determined by Student’s t test (A) or one-way ANOVA with Tukey’s post hoc test (B). EHBD, extrahepatic bile
duct; HA, hyaluronic acid; SHG, second harmonic generation.

Fetal wound healing in the extrahepatic bile duct
Viewed in another way, the distance between the lumen and the
collagen layer appeared greater in the injured fetal sheep
EHBDs and human BA remnants compared to age-appropriate
controls (Fig. 2B and Fig. S5A, B). Although the BA remnant
samples typically lacked a lumen, any epithelial structures
visualized were surrounded by HA, with collagen outside of the
HA ring (Figs 2B, 3A, and Fig. S5A, C). The main HA-producing
enzymes are HAS1–3.11 Interestingly, we observed an accu-
mulation of HAS1-3-expressing mesenchymal cells near the
lumen in fetal sheep EHBDs, mostly after hypoxia, but no dif-
ferences in the total number of HAS+ mesenchymal cells were
found between normal and hypoxic ducts (Fig. S6).

BA remnant collagen fibers differ from controls

Given that HA can disrupt collagen organization,21 we asked
whether there were organizational differences between the
1398 Journal of Hepatology, Decemb
collagen in EHBD remnants from patients with BA and controls.
The structure of the collagen around the HA layers in BA
remnants was determined using the ImageJ plugin TWOMBLI
to identify matrix patterns. It showed that collagen fibers in
Kasai remnants from patients with BA were shorter and had
more variable curvature but did not differ in density compared
to controls (Fig. 3A-E). This is consistent with the collagen or-
ganization that is observed in adult pathology.22

Fetal EHBD injury leads to a robust progenitor
cell response

We hypothesized that the differences between the ECM of the
normal adult and the fetal EHBD reflect different programs of
wound healing. Epithelial regeneration after injury of the adult
EHBD has been described in the context of adult chol-
angiopathies.23 The injured EHBDs of fetal sheep showed
er 2023. vol. 79 j 1396–1407
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Fetal wound healing in the extrahepatic bile duct
marked regeneration with the presence of a double-layered
surface epithelium, PBG hyperplasia (i.e., increased PBG
area), and increased proliferation of epithelial and mesen-
chymal cells (Fig. 4A,B). HA has been shown to increase pro-
liferation in cholangiocytes through CD44;24 although no
differences in CD44 expression were observed in the EHBDs of
control vs. hypoxic animals (Fig. S7), it is likely that the
increased amount of HA is sufficient to trigger CD44 to increase
cholangiocyte proliferation. PBGs were distributed regularly
throughout the submucosa in both the control and the hypoxia
group in fetal EHBDs (Fig. 4A), in contrast to adult EHBDs in
which the PBGs generally appear in compact clusters.5 In fetal
sheep incubated in the external womb, the area occupied by
PBGs expanded in proportion to the duration of time in hypoxic
conditions and increased in proportion to the increase in width
of the EHBD HA layer (Fig. 4C-E).

High percentages of Sox9+ and PDX1+ cholangiocytes
were observed in the BA remnants, resembling the PBGs of the
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control neonatal/infant (age: 2-6 months) EHBDs (�100% of
the PBG cells were PDX1+ and Sox9+) (Fig. 4F). Anion
exchanger 2 marks mature and functional cholangiocytes and
was generally located in the surface epithelium of control
EHBDs, but no cholangiocytes in the BA remnants expressed
anion exchanger 2 (Fig. 4F, middle panel). The surviving chol-
angiocytes in BA remnants showed high proliferation rates
compared to controls (p <0.01) (Fig. 4F, lower panel). In fetal
sheep EHBD samples, there was also marked expression of
Sox9 although it was found in PBGs as well as in the surface
epithelium, suggesting that in fetal life the surface epithelium is
still immature (Fig. S8).

Thus, although we are unable to induce similar injuries in
fetal and adult EHBDs to compare their responses directly, the
fetal biliary regenerative response appears to be distinct from
that of the adult5 and is characterized by marked PBG hyper-
plasia, marked proliferation, and increased HA (rather than
collagen) deposition immediately around the lumen.
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HA deposition by the fetal EHBD after injury predisposes
the duct to obstruction

The width of the peri-luminal HA layer as well as the water-
retaining (and therefore swelling) qualities of HA led us to hy-
pothesize that the HA deposition in the fetal ducts predisposed
to duct obstruction.25 We therefore examined the fetal sheep in
the hypoxia group for markers of biliary obstruction. First, we
found that all liver samples taken from the animals in the hyp-
oxia group (n = 11) showed bile plugs in the intrahepatic bile
ducts while none of those from the control group had plugs.
Additionally, serum bilirubin was significantly increased in the
hypoxia group (Fig. 5A). Second, we measured the density and
width of the outer collagen layer in control vs. injured EHBDs
and showed that it was narrower in injured ducts compared to
controls, and that there was a trend towards increased collagen
density, consistent with compression of the collagen bundles
by an expanding HA layer (Fig. 5B). To determine whether
swelling of HA around a duct-like structure could lead to
luminal narrowing, we used a microfluidic device that was
previously developed in our lab26 whereby collagen or collagen
plus HMW or LMW HA was gelled around a needle, forming a
channel (Fig. 5C). At baseline after needle removal, the di-
ameters of the channels ranged between 97–144 lm and were
comparable between the three conditions. We then added PBS
to the system and determined changes in luminal diameter. The
HA-filled ECM swelled, leading to a decrease in luminal diam-
eter, particularly in the LMW HA-containing devices (Fig. 5C, D).

Thus, there is compelling evidence for obstruction in the
ducts of injured fetal sheep, even in the absence of liver or duct
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fibrosis; in vitro modeling as well as the matrix structure of the
EHBDs are consistent with HA-associated swelling as a cause.
EHBD regeneration in fetal sheep promotes
mucus production

We also considered the properties of bile after fetal EHBD
injury. In addition to there being increased numbers of PBGs
in EHBDs from hypoxic fetal sheep (Fig. 4A,D), the periodic
acid-Schiff-positive area of the PBGs was consistently higher
in the hypoxia group compared to controls, indicating
increased mucin production (Fig. 6A). In the hypoxia group,
mucin-positive cells were evident in both PBGs and the sur-
face epithelium, which contained goblet cells (Fig. 6B and
Fig. S9A), in line with reports of goblet cells in human fetal
EHBDs at later points of gestation.27 Mucus produced by
PBGs, like all mucus, has a high viscosity and contributes to
the viscosity of bile.28 Based on the number of mucin-
containing cells in EHBDs in the hypoxia group, we hypoth-
esized that the viscosity of bile from these animals would be
increased. However, there was no bile visible in the gall-
bladders of the hypoxic animals. We therefore compared the
viscosity of bile from the control fetal sheep with bile from two
adult sheep. Although bile viscosity was higher in a subset of
the fetal samples, we were unable to collect enough to
determine significance (Fig. S9B).

We hypothesized that if mucus-containing bile accumulated
in the EHBD and led to increased obstruction, we would be able
to detect mucus in the intrahepatic bile plugs.
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Fetal wound healing in the extrahepatic bile duct
Bile plugs were only seen in the hypoxia group; they stained
positive for periodic acid-Schiff, indicating the presence of
mucus, in contrast to bile in the gallbladder of controls (Fig. 6C).
Pretreating livers with bilirubin oxidase to minimize potential
interference from bilirubin pigments in bile confirmed the pos-
itive staining (Fig. S10). Similar treatment of livers from patients
with BA also showed mucus staining of bile plugs. Normal
human livers do not contain bile plugs so cannot be used for
comparison, but liver sections from patients with PSC showed
less prominent mucus in bile plugs than did BA livers (Fig. 6D).
The mechanism of increased mucus is not known; HA did not
induce mucus production in HA-treated spheroids, suggesting
that the mechanism is HA independent (Fig. S9C).

Collectively, these results suggest that PBG hyperplasia and
mucus production, part of the regenerative response of the
fetal EHBD, may result in increased bile viscosity, potentially
contributing to EHBD obstruction. The damage-repair response
of fetal EHBDs includes expansion of the HA layer, which
swells, compressing both the collagen layer and the lumen. The
decreasing diameter of the lumen may impede bile flow,
especially if the bile is already viscous.
Neonatal EHBDs contain higher molecular weight HA than
adult EHBDs, which is degraded after injury

In order to better understand the dynamics of HA during devel-
opment and after injury, we studied the expression of the
1402 Journal of Hepatology, Decemb
enzymes that synthesize and degrade HA. Neonatal mesen-
chymal cells showed increased numbers of HAS1-3-positive
cells by immunostaining compared to adults (p = 0.01; p =
0.01; p <0.01, respectively) (Fig. 7A). These results suggest that
production of HA in the EHBD submucosa of neonates is higher
than in adults, consistent with our data showing that neonatal
ducts have increasedHAcompared to adult ducts, includingona
per weight basis, across species (Fig. 1). Staining for the two
major HA degradation enzymes, HYAL1 and HYAL2, similarly
demonstrated higher expression in neonates compared to adults
(p <0.01; p <0.01) (Fig. 7A). We used solid-state nanopore tech-
nology29 to determine the size of HA polymers in neonates and
adults, and we found that the molecular weight of HA was
significantly higher in neonates compared to adults, consistent
with an ongoing process of degradation after synthesis (Fig. 7B,
Table S2). Next, we asked whether injury to neonatal EHBDs led
to increased HA degradation. Treatment of neonatal rat EHBD
explants with biliatresone, a toxin that causes a BA-like pheno-
type in animal models and in explants,30 resulted in increased
breakdown of fluorescein-labelled HA (Fig. 7C and Fig. S11).
There was some damage in the DMSO-treated EHBDs, which
was likely the result of the explant culture system.

Together with Figs 1 and 2, these results indicate that pro-
duction, degradation, and average molecular weight of HA in
the submucosa of neonatal bile ducts is higher than in adult
ducts, and that injury leads to both increased production and
degradation of HA.
er 2023. vol. 79 j 1396–1407
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The size of HA influences EHBD cell behavior in 2D and
3D cultures

Our EHBD data are consistent with extensive literature
reporting that adult wound healing is associated with an
increased degradation of HA, yielding a high concentration of
LMW HA, whereas fetal wound healing is characterized by an
accumulation of HMW HA.11,14,31 To determine the cellular
response of the EHBD to LMW and HMW HA, we co-cultured
primary neonatal mouse cholangiocytes and EHBD mesen-
chymal cells in spheroids. Cells were embedded in droplets
containing a mixture of Matrigel/collagen or Matrigel/collagen/
HA. Cells cultured in mixtures with HMW HA demonstrated
increased spheroid growth, diameter, and proliferation rates
compared to cells cultured in mixtures with LMW HA
(Fig. 8A,B). Epithelial architecture differed between the groups
– in LMW HA, 19% of the spheroids showed an aberrant
morphology, whereas in HMW HA or Matrigel/collagen alone,
significantly more spheroids appeared circular with a clear
lumen (1% and 2% with aberrant morphology, respectively)
(Fig. 8C,D); yet no differences in cholangiocyte markers were
noted (Fig. S12).

To further study the effects of HMW HA on cholangiocyte
growth, we cultured human cholangiocytes in a bile duct-on-a-
chip microfluidic device26 with an ECM of collagen alone or
collagen with HMW HA. Initially, the cholangiocytes in both
Journal of Hepatology, Decemb
conditions formed a monolayer. This was followed, however, by
the formation of outpouchings exclusively in the HMW HA ECM
(Fig. 8E, leftmost panels). This phenomenon was paralleled by
an increase in cholangiocyte proliferation (Fig. 8E, middle and
rightmost panels). To assess the influence of LMW and HMW
HA on collagen production in the EHBD, we employed a 2D co-
culture system. We seeded a mixture of cholangiocytes and
mesenchymal cells isolated from neonatal mouse EHBDs and
assessed collagen deposition and organization after treatment
with media supplemented with water (control), LMW HA, or
HMW HA (Fig. 8F). After 2 weeks of culture, the monolayers
comprised cholangiocyte clusters surrounded by dense layers
of fibroblasts (Fig. 8F, leftmost panels). Second harmonic
generation imaging showed that collagen deposition was
increased by treatment with both LMW and HMW HA, but
particularly by HMW HA (Fig. 8F, middle panels). Collagen fi-
bers were more aligned (higher peak around the 0� position) in
the HMW HA-treated group compared to the control and LMW
HA groups (p <0.01 and p = 0.01, respectively) (Fig. 8F, right-
most panel). Note that cholangiocytes were directly surrounded
by HA suggesting HA production (Fig. S13); in Fig. S13,
spheroids were cultured without HA. The addition of HA to
collagen gels decreased stiffness and increased viscosity,
consistent with a malleable environment that enhances tissue
development and regeneration (Fig. S14).32
er 2023. vol. 79 j 1396–1407 1403
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Fetal wound healing in the extrahepatic bile duct
Together, these data show that HMW HA stimulates chol-
angiocyte spheroid formation and proliferation and suggest
that it may provide a favorable environment for PBG organi-
zation in vivo. In contrast, LMW HA promotes aberrant spheroid
morphology and impedes spheroid growth. This may have
important implications for cholangiocyte structures surrounded
by HA that become fragmented in pathological conditions. In
addition, both LMW and HMW HA stimulate collagen produc-
tion and alignment; this is essential for EHBD development as
well as for both regenerative (healing) and pathological (fibrotic)
wound repair.
Discussion
We demonstrate here that fetal EHBD injury initially leads to a
vigorous program of fetal wound healing. Specifically, 1) the
fetal/neonatal EHBD had high levels of HA compared to the
1404 Journal of Hepatology, Decemb
adult EHBD; 2) in the fetus and neonate, HA was localized
circumferentially immediately adjacent to the lumen, with a
relatively thin layer of collagen at the periphery of the duct,
while in adults the collagen layer reached from the periphery to
just below the mucosal layer; 3) EHBD injury in fetal sheep and
in human BA resulted in an expansion of the HA layer encircling
the bile duct lumen, with luminal narrowing and potential
compression of the peripheral collagen layer; 4) sheep fetuses
with EHBD injury demonstrated elevated bilirubin levels,
consistent with EHBD obstruction, although no liver or EHBD
fibrosis was noted; 5) sheep fetuses with EHBD injury showed
increased levels of biliary mucus production, potentially
contributing to increased bile viscosity and EHBD obstruction;
6) the molecular weight of HA was significantly higher in the
EHBDs of neonates compared to adults, and HA degradation in
the neonate increased after injury; 7) LMW HA in 3D in vitro
systems promoted an aberrant epithelial architecture, whereas
er 2023. vol. 79 j 1396–1407
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HMW HA stimulates proliferation and the formation of PBG-like
structures; and 8) both LMW and HMW HA stimulated collagen
production in co-cultures of EHBD-derived fibroblasts and
cholangiocytes. Collectively, these data not only show that fetal
EHBD injury stimulates a fetal-type wound healing response,
but also suggest that the increased deposition of HA, while
enhancing regeneration, leads to swelling and obstruction – a
potential example of a beneficial response (fetal wound healing)
“going bad”, and a new mechanism that may contribute to the
pathophysiology of BA.

Fetal wound healing is characterized by regenerative, scar-
less repair. This pro-regenerative microenvironment features
high levels of HMW HA and collagen-3 instead of the pro-
fibrotic LMW HA and collagen-1 seen in scarring adult
wounds.11,14,25 Fetal wound healing across tissues – including
the lung, heart, tendon, and skin – is characterized in rodent
and sheep models by prolonged increases in HA levels
compared to adults, lasting up to 3 weeks after the initial
injury.33 In our fetal sheep model, EHBD injury lasting as long as
21 days was accompanied by marked expansion of the HA
layer and increases in bilirubin levels. Although we were unable
to monitor the consequences of injury longer than 21 days in
this model, the nature of the fetal wound healing program in
other tissues suggests that expansion of the EHBD HA layer
and subsequent narrowing of the lumen (as described below)
could persist for weeks after the initial injury, potentially
aggravating cholestasis and thereby EHBD wall damage.

In humans, transition to a so-called adult program of wound
healing typically begins in the third trimester of pregnancy. Adult
wounds contain predominantly LMW HA31 and in a fetal rabbit
model of skin wounds, experimental fragmentation of HA with
hyaluronidase was associated with more ‘adult-like’ scarring,
defined by excessive collagen production and neo-
vascularization.34 We showed here that damage to the neonatal
rat EHBD led to increased HA degradation, reflecting a transition
to adult wound healing. We propose that fetal EHBD injury
(especially if it is persistent) or a subsequent regenerative
response in late gestation could lead to increased HA degrada-
tion, consistent with features of adult wound healing (Fig. S15).
Thus, initial prolonged HA deposition (a component of fetal
wound healing) could lead to bile duct obstruction early in
gestation, followed by scarring/fibrosing (a hallmark of BA) when
the transition to an adult wound healing program takes place.

Our results suggest that LMW HA in the EHBD wall during the
transitional period and during adult wound healing could pro-
mote aberrant epithelial morphology and decreased chol-
angiocyte growth. The BA EHBD remnants (from Kasai surgeries)
we examined had features of both fetal and adult wound healing,
with an expanded peri-epithelial HA layer and epithelial struc-
tures that were phenotypically immature and morphologically
distinct from normal PBGs and/or surface epithelium, consistent
with fetal wound healing, but collagen organization reflecting an
adult pathological process, as would be expected based on the
age of patients with BA at the time of performing the Kasai
procedure. The remarkable distribution of HA and collagen in
both fetal EHBDs and BA remnants suggests that BA should be
viewed in light of age-appropriate fetal-adult wound healing
programs and that drawing parallels between BA and adult
fibrosing cholangiopathies should be undertaken with caution.

The high concentrations of HA in the fetal EHBD may have
implications beyond regenerative healing. An HA-rich ECM is a
Journal of Hepatology, Decemb
porousmeshwork that exertspressureon its surroundingsdue to
repulsion between and within molecules.32 Furthermore, owing
to its hygroscopic properties, HA can swell up to 1,000 to 10,000
times, thereby shaping an environment in which cells and cell
structures are distanced from each other, avoiding inhibitory
contacts.25,35 This malleable HA-rich ECM is ideal for cell
migration, which may explain why PBGs are distributed evenly
throughout the fetal EHBD but are in collagen-encircled clusters
in the adult EHBD. This may also explain the formation of out-
pouchings in the collagen/HA-filled bile duct-on-a-chip – PBGs
can easily increase in number in an HA-rich environment, as
demonstrated by the remarkable PBG hyperplasia observed in
fetal EHBDs.

The increased PBG volume, including higher mucus pro-
duction leading to increased bile viscosity and expanded HA
layer during epithelial regeneration make it likely that fetal
EHBDs can swell and are particularly susceptible to obstruc-
tion, potentially even during normal development. It is also
possible that in the setting of EHBD injury during gestation,
some ducts progress to total obstruction and BA but others
undergo successful repair, potentially accompanied by tran-
sient luminal narrowing and bilirubin elevations. A recently
published large clinical trial that examined the efficacy of serum
bilirubin measurements as diagnostic tools for BA reported
that, of 123,279 total newborns tested, all seven babies who
went on to develop BA had elevated bilirubin levels at 60 hours
and 2 weeks after birth, but so did a significant number of
newborns who never developed cholestatic symptoms or dis-
ease.1 We speculate that these newborns experienced tran-
sient EHBD swelling causing elevated bilirubin levels either as
part of a healing injury – a forme fruste of BA – or even as part of
normal growth.

Steroid treatment of certain tumors leads to a reduction in
HA synthesis and stromal edema.36,37 Interestingly, the
administration of steroids after a Kasai procedure did not in-
fluence post-operative survival or the number of
transplantation-free months, but it did lead to decreases in
serum bilirubin levels.38 It is possible that steroids decreased
HA synthesis and/or swelling in the large intrahepatic bile ducts
of these patients, effectively widening the lumen. Notably, this
effect was most prominent in the younger cohort, the group
that would be most likely to have high levels of HA. It is
conceivable that as BA progresses, more collagen is deposited
around the ducts and other epithelial structures, limiting the
effect of steroids on reducing EHBD wall volume.

We observed numerous goblet cells in the EHBDs of the
hypoxic animals, although intestinal metaplasia was found in
some control fetal sheep EHBDs as well. The occurrence of
goblet cells in the surface epithelium of the EHBD has been
described previously in autopsy samples from human newborns
between 28-41 weeks of gestation,27 although it is not a general
featureofBA.Wenotedhigher overall viscosity of fetal compared
to adult bile in sheep and it is possible that the same is true in
humans; we hypothesize that the combination of swelling and
luminal narrowing from HA and viscous bile contributes to
luminal obstruction and BA pathophysiology, although this
would be difficult to test in human fetuses and neonates.

In summary, the damage-repair response of the fetal EHBD
is an example of fetal wound healing. The expansion of the HA
layer in the EHBD wall potentially leads to obstruction of the
EHBD lumen, which can be detected by elevated serum
er 2023. vol. 79 j 1396–1407 1405
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bilirubin levels. The initial luminal narrowing could lead to pro-
gression of fibrosis/scarring when accompanied by the transi-
tion to adult-type wound healing in late gestation, including
increased degradation of HA. Viewing the damage-repair
1406 Journal of Hepatology, Decemb
response of fetal EHBDs in the context of fetal wound healing
will be crucial to understanding the early pathogenesis of BA,
including rapid progression to biliary fibrosis after birth, and to
the development of potential treatments.
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