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A B S T R A C T   

Among the structural alloys for this fast reactor, 316H stainless steel has emerged as a promising 
candidate. Because the operating temperature of Sodium-cooled reactor is specifically designed to 
be 550 ◦C, this operating temperature triggers material inelastic behavior depends more on the 
coupling of fatigue and creep, which complicates the constitutive model. By introducing static 
recovery terms, previous studies could capture some experimental features, but failed to describe 
the interaction by fatigue and creep. In this work, in order to describe the fatigue and creep 
during cyclic relaxation of 316H stainless steel at 550 ◦C, we propose a modified visco-plastic 
constitutive model within the framework of unified Chaboche model. In the proposed model, 
the parameters related to the static recovery items are coupled, and thus cannot be identified from 
experiments using the traditional trial and error. To address this issue, we employed the Bayesian 
approach to identify these parameters. The parameter identification involves two steps: (i) con-
structing a Gaussian Process surrogate model using data generated from the finite element 
method, and (ii) obtaining the value of parameters through Markov Chain Monte Carlo sampling 
under the Bayesian framework. The proposed procedure, is demonstrated by the using experi-
mental results of 316H stainless steel at 550 ◦C. Under the coupling of fatigue-creep, the material 
exhibits a cyclic-dependent accelerated stress relaxation before reaching the saturated stage and a 
steady state of relaxed stress after a long holding time. These mechanical responses are well 
predicted by the proposed model. Further, we conducted two kinds of multi-axial cyclic test, 
tensile test of notched bar and coupled tensile-torsion test, to validate the proposed constitutive 
model for the cyclic behavior under the multi-axial stress state.   

1. Introduction 

The impact of fatigue and creep deformation, along with damage accumulation, is significant in high-temperature components like 
heat exchangers and steam pipes. The high temperature presents a challenge for structural integrity assessment (Pineau and Anto-
lovich, 2015). Currently, standards such as ASME and R5 estimate the component’s life using a simple linear damage summation rule, 
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in which creep and fatigue damage are calculated separately. However, it is known that creep and fatigue are coupled at high tem-
perature, so that a simple summation rule may lead to an incorrect conclusion. Therefore, it is urgent to develop a comprehensive 
model that accurately describes the interaction between low-cycle fatigue and fatigue-creep from both scientific and engineering 
perspectives. 

Over the past few decades, there have been several studies to experimentally reveal the interaction effect between fatigue and 
creep. Typically, holding time is introduced at the peak, valley point, or both of the cyclic loading spectrum under stress-controlled and 
strain-controlled conditions. Stress-controlled condition has been experimentally focused on ratcheting behavior influenced by stress 
states, holding time effect, and cyclic hardening/softening effect (Yaguchi and Takahashi, 2005; Taleb, 2013; Zhang et al., 2017; Xu 
et al., 2020; Joseph et al., 2020). For example, Yaguchi and Takahashi (2005) found that holding time would increase the ratcheting 
strain rate, while this effect would be reduced under multiaxial conditions. Zhang et al. (2017) reported that the anelastic strain 
produced during unloading would reduce the influence of creep on the creep-fatigue interaction. More recently, Joseph et al (2020) 
discovered that the dwell hold could contribute to the stress concentration on the boundary of soft grain and hard grain by the 
mechanism of dislocation pile-ups in a near alpha titanium alloy. For the strain-controlled condition, cyclic behavior has been related 
to holding time, strain range, and thermal influence (Yaguchi et al., 2002; Zhan and Tong, 2007; Barrett et al., 2016; Chen et al., 2016; 
Zhao and Chen, 2020; Alsmadi et al., 2020; Ding et al., 2022). For instance, the mean stress in the strain-controlled cyclic loading could 
be reduced with the holding time (Chen et al., 2016). Additionally, the decrease of strain range and increase in temperature could 
improve the influence of stress relaxation on the cyclic visco-plastic behavior (Barrett et al., 2016). Recently, Ding et al. (2022) found 
the cyclic life would be saturated with the increase of dwell time for the DZ445 nickel-based superalloy, and the saturation was more 
obvious at a higher strain range. 

Many inelastic constitutive models have been developed to describe the fatigue creep interactions for alloys deformed at high 
temperature. Those models are generally in the framework of either crystal plasticity or continuum mechanics. For the crystal visco- 
plasticity model, the micromechanical deformation mechanisms are considered explicitly to describe the fatigue creep interactions. 
For example, Estrada Rodas and Neu (2018) included the evolution of γ′ phase in the crystal visco-plastic model to describe the fatigue 
creep interaction in the nickel-base superalloy CMSX-8. Recently, (Zheng et al., 2022) investigated the effect of rise and fall time on the 
load shedding for the dwell fatigue of titanium alloys by involving microstructures in the crystal model. However, the crystal 
visco-plasticity model is time-consuming for calculation and not suitable for structural analysis. The macro visco-plasticity model, 
which has been developed in the framework of continuum mechanics, owns the advantage of fast culculatation and can be used in the 
structural integrity assessment directly. Normally, the kinematic hardening rule in the macro visco-plastic model consists of three 
terms: linear hardening, dynamic recovery, and static recovery. The former two terms have been improved extensively to describe the 
strain-controlled or stress-controlled cyclic behaviors without dwell (Kang et al., 2003; Hassan et al., 2008; Ahmed et al., 2016; Sun 
et al., 2020; Cao et al., 2021; Du et al., 2022). Meanwhile, the static recovery term has been employed in numerous papers to describe 
the effect of holding time on cyclic behaviors (Yoshida, 1990; Kang et al., 2006; Chaboche, 2008; Ramaswamy et al., 1990; Yaguchi 
and Takahashi, 2005; Yaguchi et al., 2002; Zhan and Tong, 2007). For example, Yaguchi et al. (2002) employed the static recovery 
term to describe the creep and stress relaxation-induced increase of mean stress. Zhan and Tong (2007) showed that the static recovery 
term in the modified Chaboche model could predict the stress relaxation behavior of a nickel-based superalloy at different cyclic strain 
rates. More recently, Ahmed et al. (2016) improved the visco-plastic model by incorporating the effect of strain range and rate on the 
fatigue creep interaction of the Haynes 230 alloy. However, these constitutive models are limited to describe the saturated state of 
fatigue-creep response since the static recovery term is treated as a constant value in the kinematic hardening rule. To account for the 

Fig. 1. Illustration of relation between macro stress relaxation behavior in cyclic loadings and micro deformation mechanism: (a) typical strain- 
controlled fatigue-creep loading diagram; (b) evolution of stress during the holding period; and (c) static recovery due to the mechanisms of 
dislocation climb and thermal activated dislocation glide. 
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cycle-dependent feature of stress relaxation in the tests, Zhang and Xuan (2017) proposed a decreased static recovery term that could 
accurately simulate each cyclic relaxation behavior. Their model shows high accuracy for short holding periods, but may not be 
applicable for long holding time because of the lack of a time-related physical mechanism. Moreover, the static recovery parameters 
are coupled with each other and are difficult to be obtained through the traditional trial and error method. 

The Bayesian inference method, which is one of the typical machine learning techniques, has been employed to infer the highly 
nonlinear parameters. For example, Castillo and Kalidindi (2019) utilized the Bayesian inference method to estimate the crystal elastic 
parameters for polycrystalline alloys. The Bayesian method involved two steps in their work: 1. building the functional relation be-
tween the parameters and the observed properties by a surrogate model; 2. sampling the distributions of possible values for those 
parameters. The parameters could be obtained from the posterior distributions. A similar approach has also been used to infer the 
grain-scale parameters from nanoindentation tests in Titanium alloys (Venkatraman et al., 2022) and orientation-dependent polymer 
properties for fiber-reinforced polymer composites (Thomas et al., 2022). Those studies indicate that the Bayesian inference method is 
a powerful approach for parameters’ identification. 

The objective of this research is to develop a robust constitutive model that can be effectively applied in inelastic analysis for 
structural integrity assessment at high temperature. The model in our previous study (Du et al., 2022) has mainly focused on the cyclic 
behavior of alloys at room temperature, neglecting the dislocation deformation mechanisms. However, as illustrated in Fig. 1, 
dislocation climb and dislocation glide play an important role in the cyclic relaxation behavior at high temperature. As a result, the 
constitutive model in our previous study cannot describe the cyclic relaxation behavior at high temperature. On the contrary, the 
present constitutive model will consider the dislocation mechanisms, with both inelastic accumulated strain and relaxation time in the 
static recovery term. 

In this work, we first review the classical Chaboche model and related revisions. Our focus is to revise the static recovery term for 
considering the coupling effect by fatigue and creep, so that the constitutive model can be used for long time prediction at high 
temperature. Subsequently, the parameters of the proposed model are identified by utilizing machine learning (Gaussian process and 
Bayesian inferences) techniques. Because 316H stainless steel is considered as a potential material for fourth-generation nuclear plants 
and the operating temperature of Sodium-cooled reactor is specifically designed to be 550◦C, we use 316H stainless steel at the 
working temperature of 550 ◦C as an example in this work. Under both uniaxial and multi-axial stress states, we employ the proposed 
model to predict the fatigue-creep interaction behavior of 316H stainless steel at the temperature of 550 ◦C. 

2. Development of the modified Chaboche model for fatigue-creep interaction 

To describe the stress relaxation phenomenon, static recovery term has been incorporated in the hardening rules of the constitutive 
model (Chaboche, 1989). However, used as a constant value, static recovery term in the kinematic hardening rule could not describe 
fatigue-creep interaction precisely (Ahmed et al., 2016). Thus, the cycle-dependent behavior of stress relaxation at high temperature 
requires a new model which should take the coupled mechanism into account. In this section, we first review the framework of the 
classical Chaboche model, then propose our revision, and finally, summarize the model parameters that need to be identified. 

2.1. Review of the classical Chaboche model 

The classical Chaboche model (Chaboche, 1989) assumes small strain isotropic elasticity. This visco-plastic model is in the unified 
framework: 

ε = εe + εin (1)  

εe = D− 1:σ (2)  

ε̇in =
̅̅̅
3
2

√ 〈
F
K

〉n s − α
|s − α| (3)  

F =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
3
2
(s − α) : (s − α)

√

− σ0 − R (4)  

where D, s and α represent the elastic tensor, the deviatoric stress tensor and the back stress tensor, respectively. R gives the isotropic 
hardening while σ0 means the initial yield stress. K and n are material parameters to be calibrated. 〈〉 is Macauley bracket, which means 
〈x〉 = 0 when x<0 and 〈x〉 = x when x ≥ 0. 

In the classical Chaboche model, the back stress α is decomposed into M components, each of which consists of the following three 
terms: 

α =
∑M

i=1
αi (5)  

α̇i =
2
3
Ciε̇p − ξiαiṗ − ri[J(αi)]

mi − 1αi (6) 
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where Ci and ξi are material parameters related to the linear hardening term and the dynamic recovery term, respectively; ṗ is the 
equivalent inelastic strain rate; J(αi) is the second invariant of back stress. The parameters, ri and mi in the static recovery term can be 
treated as the same value for different component of back stress (Kan et al., 2007; Yaguchi et al., 2002). Also, as demonstrated by Bari 
and Hassan (2000), three components of the back stress are sufficient to predict the cyclic loading behaviors. Accordingly, the above 
equations are reformulated to: 

α =
∑3

i=1
αi (7)  

α̇i =
2
3
Ciε̇p − ξiαiṗ − r[J(αi)]

m− 1αi (8) 

The classical Chaboche model employes an isotropic hardening rule to predict the peak stress in the low-cycle fatigue test for 316 
stainless steel (Chaboche, 1989). The form of the isotropic hardening rule follows: 

Ṙ = b(Q − R)ṗ (9)  

where Q and b are parameters that represent the saturated value of R and the initial isotropic hardening rate, respectively. The peak 
stress evolution of cyclic hardening materials under the low cycle fatigue can be described precisely by above isotropic hardening rule. 
However, the holding time at the maximum strain could reduce the magnitude of saturated peak stress (Chaboche and Rousselier, 
1983). Consequently, the static recovery term needs to be introduced in the isotropic hardening rule. The form of static recovery term 
was proposed in the early works (Chaboche, 1989; Chaboche and Rousselier, 1983): 

Ṙ = b(Q − R)ṗ − γisoRmiso (10)  

where γiso and miso are parameters related to static recovery. It is noteworthy that the previous visco-plastic constitutive models have 
rarely considered a time recovery term on the isotropic hardening under the creep-fatigue condition (Kang et al., 2006; Yu et al., 
2012a). 

2.2. Revision of the classical Chaboche model 

The revision of the classical Chaboche model is stimulated by two uncaptured experimental phenomena in the strain-controlled 
fatigue-creep test: First, the plastic modulus changes with the cyclic number during the plastic deformation (Kang et al., 2003); 
Second, depending on the material, the relaxation behavior decelerates or increases with the increasing cyclic number during the 
holding time (Chaboche, 2008). Regarding the changing plastic modulus, we can modify the dynamic recovery term by making the 
parameter ξi as a function of accumulated inelastic strain p (Du et al., 2022): 

ξi(p) = ξ0
i + ξΔ

i [1 − exp( − Dip)] (11)  

where ξ0
i , ξΔ

i and Di are parameters to control the shapes of hysteresis curves. 
The second uncaptured experimental phenomenon is the key focus of present work, and is related to the static recovery term. In 

previous studies (Chaboche, 1989; Yaguchi et al., 2002; Ahmed et al., 2016), the static recovery parameter r (in Eq. (8)) has been kept 
constant to describe fatigue creep interaction behavior during the cycling loading. This parameter has been calibrated by the relaxed 
stress in the saturated curve. However, the magnitude of relaxed stress changes with the loading cycles for both cyclic hardening 
materials (Barrett et al., 2016; Zhan and Tong, 2007) and cyclic softening materials (Zhang and Xuan, 2017). The dependence of 
relaxed stress on the loading cycle cannot be captured properly by the classical Chaboche model. Based on the experimental data of P92 
steel, Zhang and Xuan (2017) proposed a new nonlinear kinematic rule with the following static recovery term: 

r(p) = r0[φs +(1 − φs)e− ω1p] (12)  

where r0, φs and ω1 are parameters correlated to the static recovery. p is the accumulated inelastic strain that can reflect the change of 
loading cycle. The proposed model was indeed able to capture the changes in relaxed stress with the loading cycle. However, it failed to 
describe the relaxed stress curves for certain cases, as shown in Fig. 17(d) of Zhang and Xuan (2017). This suggests the lack of a certain 
mechanism in the constitutive equation, which should be a new term in the revised Chaboche model. 

The physical mechanism of many macroscopic phenomena related to inelastic deformation can be traced back to the evolution of 
dislocations at the microscopic length scale. As illustrated by Fig. 1, the stress would decrease with time during the strain-holding 
period in the cyclic loading conditions. This phenomenon is introduced by the static recovery effect. As discussed by Xiao et al. 
(2022), the static recovery effect relates to the annihilation of dislocations, which is caused by the mechanisms of dislocation climb and 
thermal-activated dislocation glide. In addition, a general solution for dislocation density evolution ρ(t) with the effect of static re-
covery is suggested by Kohnert and Capolungo (2022): 

ρ(t) = ρ0[1 + αρ0t]
− 1 (13)  

where ρ0 is the dislocation density at the beginning of stress relaxation, t represents the recovery time. The stress can be correlated with 

R. Du et al.                                                                                                                                                                                                              



International Journal of Plasticity 170 (2023) 103743

5

the dislocation density through Taylor hardening law τ∝ ̅̅̅ρ√ . Therefore, the relaxed stress during the strain-holding period relates to the 
recovery time t. In other words, the static recovery term r (in Eq. (8)) should incorporate static recovery time in addition to the 
accumulated plastic strain. As a phenomenon-based macroscopic model, there are multiple choices to insert a time scale into the 
model. For convenience, we add a time scale based on the revised static recovery model proposed by Zhang and Xuan (2017): 

r(p, trelax) = r0[φs +(1 − φs)e
− (ω1p+ω2 trelax)] (14)  

where ω2 is the parameter, trelax represents the time of relaxation and returns to zero if a reverse loading happens. As indicated by 
Kohnert and Capolungo (2022), the dislocation evolution relates to the initial dislocation density and the relaxation time. At the same 
time, the initial dislocation density is strongly related to the accumulated plastic strain. Therefore, it is a natural choice to propose the 
above formulation. Mathematically, it is also possible to propose other formats to reflect the effect of the relaxation time, the only 
difference is the parameter value associated with trelax. 

As demonstrated in the later application of the constitutive model, the static recovery effect would disappear after a certain holding 
time. Thus, it is necessary to add a threshold time to describe this phenomenon. In our final constitutive model, a threshold time 
parameter t0 with the Heaviside step function H is added to the static recovery terms. This treatment indicates that the dislocation 
microstructure reaches a stable configuration when the recovery time reaches t0. The revised hardening rules are summarized in 
Table 1. 

Although certain terms in the proposed model bear resemblance to the model used in our previous study (Du et al., 2022), the 
applications of these two models are distinctly different. In this study, our aim is to describe the cyclic-dependent relaxation behavior 
of alloys at high temperatures, necessitating the consideration of both inelastic accumulated strain and relaxation time in the static 
recovery term. This inclusion is crucial to account for dislocation evolutions occurring at high temperatures. Conversely, our previous 
work (Du et al., 2022) primarily focused on describing ratcheting behavior at room temperature, where only inelastic accumulated 
strain was included in the static recovery term. 

In conclusion, to accurately describe the cyclic-dependent relaxation behavior of alloys at high temperature, we incorporate the 
influence of relaxation time on the static recovery term in both the kinematic hardening and isotropic hardening rules. 

2.3. Parameters Identification of constitutive model 

According to the identification method, we can classify the parameters of the proposed constitutive model into two classes, as listed 
in Table 2. The parameters in the first class can be obtained ‘directly’ by extraction or fitting of the experimental data. For the pa-
rameters in the second class, they are either in highly non-linear equations or highly correlated, therefore some ‘advanced’ identifi-
cation methods are required. 

2.3.1. Parameters in the first class 
Here, we provide a brief description of the process of identifying the parameters in the first class. Firstly, the rate-dependent 

parameter K and n can be obtained by fitting the uniaxial tensile stress-strain curves. Secondly, the parameters of hardening rules 
besides the static recovery can be calibrated by the low cycle fatigue test. Specifically, the isotropic hardening parameters Q and b can 
be identified by the yield surface versus the cyclic number curve. The kinematic hardening parameters besides the static recovery can 

Table 1 
Summary of hardening rules used in the constitutive model.  

Hardening rule Classical Chaboche model Revised Chaboche model 

Kinematic hardening α =
∑3

i=1αi 

α̇i =
2
3
Ci ε̇p − ξiαi ṗ − [J(αi)]

m− 1αi 

α =
∑3

i=1αi 

α̇i =
2
3
Ci ε̇p − ξi(p)αi ṗ − H(t0 − trelax)r(p, trelax)[J(αi)]

m− 1αi 

ξi(p) = ξ0
i + ξΔ

i [1 − exp( − Dip)]
r(p, trelax) = r0[φs + (1 − φs)e− (ω1p+ω2 trelax)]

Isotropic hardening Ṙ = b(Q − R)ṗ Ṙ = b(Q − R)ṗ − H(t0 − trelax)γisoRmiso  

Table 2 
Classification of parameters in the constitutive model.   

Item Parameter  

Visco-plastic K, n 
First Class Elastic E, v,σ0 

Kinematic (besides static recovery) C1, C2, C3, ξ0
1, ξ0

2, ξΔ
1 , ξΔ

2 , D1, D2, ξ3 
Isotropic (besides static recovery) Q, b 

Second Class Kinematic (with static recovery) r0, φs, ω1, ω2,m 
Isotropic (with static recovery) γiso, miso 

Threshold time of static recovery t0  
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be determined by the shape of hysteresis for the first and last cycles. 

2.3.2. Parameters in the second class 
The parameters in the second class are related to the static recovery term in the hardening rule. In contrast to the parameters in the 

first class, the parameters in the second class are highly correlated in the constitutive equation, and therefore cannot be easily 
identified by the trial-and-error method. Zhang and Xuan (2017) obtained these parameters through this method, but only with the 
limited number of parameters. Yaguchi et al. (2002) provided parameter values directly in their study, this requires sufficient 
pre-knowledge. In our study, we employ an effective machine learning method, which is called the Bayesian inference method, to 
identify those parameters. The Bayesian inference method has been used to estimate the crystal elastic parameters for polycrystalline 
alloys (Castillo and Kalidindi, 2019) and orientation dependent polymer properties for fiber-reinforced polymer composites (Thomas 
et al., 2022). In conclusion, the additional terms introduced in the modified Chaboche model are difficult to be identified from simple 
standard tests and one of the machine learning approaches will be employed for parameter identification. 

3. Inverse method for parameters’ identification 

Typical machine learning methods, such as regression with polynomials and neural networks, aim to find parameter values that can 
best fit the training data. By contrast, with the Bayesian approach, we can find the distribution of the parameter conditioned on the 
observed training data. The prediction is a distribution instead of a single value. The general idea of the Bayesian inverse method is to 
obtain the posterior Probability Density Function (PDF) of parameters based on the initial belief and the likelihood function using the 
experimental results. However, the calculation of the posterior PDF cannot be solved analytically in real-world data (Hoff, 2009), 
necessitating the use of an approximate method. One of the most popular approximate methods is Markov Chain Monte Carlo (MCMC) 
which uses random sampling to represent probability distributions (Robert and Casella, 1999). Generally, the MCMC method requires 
the order of samples to be 104 - 106 to ensure the stationary distribution of the Markov chain (Betancourt, 2017). Unfortunately, this is 
computationally infeasible to build the database through finite element simulations directly, since each simulation would take 
approximately 20 minutes in our study. Thus, we use a surrogate model to substitute the results from finite element simulations. In this 
study, the Gaussian process is served as the surrogate model to calculate the likelihood function that is used in the MCMC process. To 
construct the dataset used for the Gaussian Process, a series of finite element simulations are performed using the commercial software 
ABAQUS with the implementation of the modified Chaboche model through UMAT. 

3.1. Gaussian process regression-based surrogate model 

From the statistical perspective, the Gaussian process (also called the stochastic process) is a collection of finite random variables 
that possess a multivariate Gaussian distribution. We can define dataset D := (xn, hn) with N input-output pairs, where n = 1 ... N. 
Using the notation hr = f r(x), we can specify the following Gaussian process on f r(x): 

p(f) = G P (f r(x);μ(x), k(x, x′)) (15)  

by the mean function μ(x) and the covariance function k(x,x′). The mean function determines the expected function value of hr = f r(x), 
while the covariance function reflects the degree of deviation from the mean. Generally, a zero mean function can be employed when 
there is no prior belief (Rasmussen and Williams, 2006). The classical radial basis function is selected as the covariance function: 

k(x, x′) = exp
(

−
1
2
(x − x′)TΘ− 2(x − x′)

)

(16)  

where Θ is a length-scale parameter. Accordingly, the prior GP on the function response yields: 

p(f) = G P (f ; 0, k) (17) 

In this study, we also add a Gaussian noise to each function to aid the numerical conditioning (Ababou et al., 1994). 
The next step of GP is to infer the posterior of f with the observed test data Dx∗ := (x∗n,h

∗
n). We use the notation h∗

r = yr(x∗
n). By 

sharing a joint Gaussian distribution with f , the Gaussian process in Eq. (15) can be conditioned on the vector y: 

p(f , y) = G P

(⃒
⃒
⃒
⃒
f
y

⃒
⃒
⃒
⃒;

⃒
⃒
⃒
⃒

μ
m

⃒
⃒
⃒
⃒,

⃒
⃒
⃒
⃒

k κT

κ C

⃒
⃒
⃒
⃒

)

(18) 

The notation above extends the Gaussian process on f to the include of y whose marginal distribution is: 

p(y) = N (y;m,C) (19)  

and κ is the cross-covariance function between f and y. Following the Baye’s rule, the posterior on f can be obtained by using Eqs. (17) 
and (18): 

p(f |y) = G P (f ;μD,KD) (20)  
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where: 

μD = κTC− 1(y − m) (21)  

KD = k − κTC− 1κ (22) 

After introducing the formulation of GP, the last step is to obtain the values of hyperparameters Θ. Generally, these parameters can 
be found by maximizing the likelihood function in the training set. To ensure numerical stability, the following log-likelihood function 
is preferred (Schulz et al., 2018): 

logp(y|x,Θ) = −
1
2
yTk− 1y −

1
2

log|k| −
n
2

log2π (23) 

The GP has been implemented by using the Python package GPytorch (Gardner et al., 2018). When selecting hyperparameters of a 
kernel, it is known that Eq. (23) may have multiple local maxima, thus it is important to carefully choose the initialization of the 
optimization procedure. Here, the classical Broyden Fletcher Goldfarb Shanno (BFGS) algorithm is employed for hyperparameters’ 
optimization (Rasmussen and Williams, 2006). 

3.2. Bayesian inference 

Based on Bayes’ theorem, Bayesian inference has been developed to obtain the posterior Probability Density Function (PDF) of 
parameters. The parameters can be regarded as random variables, and their PDF can be estimated based on the experimental results. 
For brevity, we useXas the parameters to be identified and Y as the corresponding experimental results. According to the classical 
Bayes’ theorem, we have: 

P(X|Y) =
P(Y|X)P(X)

P(Y)
(24)  

where P(X) and P(Y|X) refer to the prior and likelihood PDFs, respectively. The prior P(X) is the prior belief of the parameters’ PDF 
before observing any experimental data. The likelihood P(Y|X) gives the PDF of experimental results Y under the parameter value X. As 
P(Y)is a normalization constant to ensure the posterior P(X|Y) over X equals 1, the above equation can be written as: 

P(X|Y)∝P(Y|X)P(X) (25) 

Generally, the statistical summaries of the posterior include the mean, the maximum a posteriori probability (MAP) point, and the 
covariance matrix. The values of those summaries depend on the shape of the posterior rather than its absolute distribution. Thus, the 
posterior in Eq. (25) can be obtained by formulating only the likelihood function P(Y|X) and prior function P(X). 

We move to present the likelihood and prior functions, which can be used to characterize the posterior of those static recovery 
parameters. Normally, we use an additive noise function to construct the likelihood function: 

Y = f (X) + noise (26)  

where f represents the material description and is the function of unknown parameters X. By assuming the statistical independence of 
the parameters (X) and the error (noise), the likelihood function can be given by: 

P(Y|X) = Pnoise(Y − f (X)) (27)  

where Pnoise(Y − f(X)) is the PDF of noise, which is treated to be identical for different experiments. The prior function P(X) is the prior 
belief before observing any experimental data, and its influence on the posterior diminishes as the number of observation increase 
(Rappel et al., 2020). Due to the lack of information, we will use an uncorrelated uniform distribution with the same boundaries used in 
the surrogate model training, which will be discussed in Section 4.3. As a result, we can obtain the likelihood function and prior 
function by applying the aforementioned principles. 

Once the posterior has been calculated from Eq. (25) with the known likelihood and prior functions, we can obtain the mean and 
the MAP point of parameters. As mentioned before, the posterior PDF cannot be solved analytically in our case, and the Gaussian 
process surrogate model is employed to evaluate the likelihood during the Markov Chain Monte Carlo random walk. In our work, the 
No-U-Turn sampler (Hoffman and Gelman, 2014) is implemented in the Python package PyMC3 (Salvatier et al., 2016). 

4. Application to 316H stainless steel at the working temperature 

In this section, we verify the modified Chaboche model in describing the fatigue and creep behaviors of 316H stainless steel at the 
working temperature of 550◦C. For this purpose, we first present the testing conditions and main features of experimental results. 
Subsequently, we present the process of identifying the static recovery parameters by using the Bayesian inverse method. Further, we 
conducted two kinds of multi-axial cyclic test, tensile test of notched bar and coupled tensile-torsion test, to validate the proposed 
constitutive model for the cyclic behavior under multi-axial stress state. 
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Table 3 
Chemical composition (wt.%) of studied 316H stainless steel.  

Element Cr Ni C Mn P S Si Mo Co N 

Amount 17.20 12.20 0.043 1.62 0.019 0.001 0.46 2.51 0.033 0.051  

Table 4 
Summary of mechanical testing conditions at 550◦C  

Fig. 2. Initial microstructure studied 316H stainless steel: (a) EBSD map and (b) inverse pole figure.  
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4.1. Material and testing conditions 

In this study, 316H stainless steel with nominal composition in Table 3 was selected. A scanning electron microscope with electron 
backscattering diffraction (EBSD) was used to analyze the initial texture. The material was machined into a solid bar for mechanical 
characterization. Specifically, the specimen for cyclic tests owns a section diameter of 6 mm and gauge length of 12 mm, while the 
specimen for monotonic tensile tests has a section diameter of 6 mm and gauge length of 36 mm. The mechanical testing conditions are 
provided in Table 4. All the tests at high temperature were conducted using the Materials Testing Systems servo-hydraulic test ma-
chine. The testing temperature was limited at 550 ◦C, which was the designed temperature for sodium-cooled fast reactors. 

4.2. Experimental results 

4.2.1. Initial microstructure 
Fig. 2 displays the initial microstructure of 316H stainless steel. The random colors in Fig. 2(a) and the low maximum density value 

in Fig. 2(b) both indicate a nearly random crystallographic texture at the initial state, suggesting that the von Mises yield criterion can 
be used in the constitutive model for this material at the macroscopic length scale. The microstructure study in Fig. 2(a) reveals that the 
material possesses an average grain size of 90 μm. Furthermore, twin substructures were also observed, which can provide additional 
barriers that hinder dislocation motion, effectively strengthening the material. 

4.2.2. Uniaxial Tensile tests 
The following three testing strain rates were used in the uniaxial tensile (UT) tests: 1× 10− 5s− 1, 1× 10− 4s− 1and 1 × 10− 3s− 1. The 

test with a strain rate of 1 × 10− 5s− 1 was terminated at the true strain of 0.03, while the other two kinds of test were stopped at 0.08. 
The stress strain curves in Fig. 3 indicate the material’s rate independence when deformed at 550 ◦C. Similar high-temperature rate- 
independent behavior of austenitic steel has also been reported in the literature (Yu et al., 2012b), which can be attributed to dynamic 
strain aging. 

Fig. 3. Uniaxial tensile tests at different loading strain rates.  

Fig. 4. Low cycle fatigue test: (a) strain-stress curve and (b) peak stress against the cyclic number  
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4.2.3. Low Cycle Fatigue test 
The low cycle fatigue (LCF) test was performed at a strain rate of 1 × 10− 3s− 1 and the strain amplitude Δε/2 was selected as 0.5%. 

As illustrated in Fig. 4, the material exhibited a cyclic hardening at the beginning and reached a saturated state after approximately 52 
cycles. Due to the cyclic nature of the material, the total cycling number was limited to 200. 

4.2.4. Fatigue creep interaction test 
For the fatigue creep interaction (FCI) test, the testing conditions were identical to those of the low cycle fatigue (LCF) test, except 

for the addition of a three-minute hold time at the maximum strain. Fig. 5 indicates that the holding time had no influence on the 
cycling number required to reach the saturated state. However, the final saturated peak stress in the FCI test was 18 MPa lower than in 
the LCF test, indicating that the holding time could reduce the saturated peak stress. Another feature of the FIC test referred to the 
evolution of the relaxed stress Δσr, which was defined by the difference between the initial stress at the beginning of the strain hold and 
the stress during the strain hold period (Zhang and Xuan, 2017). Shown in Fig. 5 (c), the magnitude of relaxed stress increased with the 
cyclic number, which was the typical feature of cyclic hardening materials (Zhan and Tong, 2007). Furthermore, the rate of relaxed 
stress magnitude during each cycle decreased with the holding time and reached an almost constant value when the holding time 
exceeded 40 seconds. 

4.2.5. Fatigue and then long creep test 
For the fatigue and then long creep (FLC) test, 10 hours of holding were performed at the strain of 0.5% after the LCF test. Two 

features could be observed from the long-term relaxed curve (Fig. 6): first, the stress kept constant after approximately 1000 seconds of 
holding time; second, the total reduced stress (around 50 MPa) was higher than the reduced stress of each cycle in the FCI test. 

4.3. Identification of material parameters 

In this section, we present the process of identifying material parameters of the modified Chaboche model by using the experi-

Fig. 5. Fatigue creep interaction test: (a) strain-stress hysteresis curve; (b) peak stress against the cyclic number, (c) evolution of relaxed stress in the 
typical loading cycles. 
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mental features of 316H stainless steel at 550 ◦C. The general flow chat is presented in Fig. 7. The parameters in the first class are 
identified from the experimental results of uniaxial tensile tests and low cycle fatigue test by employing fitting approach directly. 
Specifically, the rate-dependent parameter Kand n are calibrated by fitting the uniaxial tensile stress-strain curves; the isotropic 

Fig. 6. Relaxation curve after low cycle fatigue  

Fig. 7. The process of parameters identification  

Table 5 
Identified parameters of the modified Chaboche model.  

Item Parameters 

Visco-plastic K = 50 MPa, n = 10 
Elastic E = 135 GPa, v = 0.3, σ0 = 83 MPa 
Kinematic (besides static 

recovery) 
C1 = 57176 MPa, C2 = 11480 MPa, C3 = 900 MPa, ξ0

1 = 1453, ξ0
2 = 280, ξΔ

1 = − 773, ξΔ
2 = − 95, D1 = 10, D2 = 11, ξ3 =

9 
Isotropic (besides static recovery) Q = 101.2 MPa, b = 5.3 
Kinematic (with static recovery) r0 = 1.778× 10− 6, φs = 0.035, ω1 = 0.41, ω2 = 0.04,m = 3.26 
Isotropic (with static recovery) γiso = 3.27× 10− 6, miso = 1.69 
Threshold time of static recovery t0 = 1000 s  
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hardening parameters Q and b are obtained by fitting the peak stress evolution in the low cycle fatigue test. For the kinematic 
hardening parameters in the first class, the first and last hysteresis curves of low cycle fatigue test are employed by using the approach 
of (Bari and Hassan, 2000). 

Table 5 displays the value of these identified parameters. The comparison shown in Fig. 8 demonstrates that the parameters in the 
first class of the modified Chaboche model can accurately reproduce the experimental results for both hysteretic curves and peak stress 

Fig. 8. Comparison of experimental data with simulated results for low cycle fatigue test: (a) the first loading cycle, (b) the last loading cycle, and 
(c) the peak stress against the cyclic number. The solid lines are the results simulated by modified Chaboche model, and the dash lines represent the 
results simulated by classic Chaboche model 

Fig. 9. Comparison of peak stress evolution between low cycle fatigue test and fatigue creep interaction test.  
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evolution. However, the simulated results from the classical Chaboche model exhibit a discrepancy in the plastic modulus compared to 
the experiment result during the final loading cycle. This deviation would cause incorrect prediction of accumulated inelastic strain 
over a large number of cycles. 

The emphasis of this section is to obtain the parameters in the second class by using the Bayesian inference method. Those pa-
rameters can be further classified into isotropic parameters and kinematic parameters. The following part will identify those pa-
rameters individually. 

4.3.1. Isotropic parameters in second class 
Shown in Fig. 9, the saturated peak stress in the FCI test is 18 MPa lower than that in the LCF test, which is due to the static recovery 

effect. To consider the effect of holding time on the saturated peak stress, the static recovery item γisoRmiso is added to the isotropic 
hardening rule, as seen in Eq. (10). Parameters γisoand miso are used to consider this influence. With the evolution of peak stress in FCI 
test, this section aims to use the Bayesian inverse method to infer the parameters γiso and miso. 

The first step is to construct an accurate GP surrogate model based on the dataset generated from the FE simulations. The boundary 
conditions in the FE simulations are identical to those of the FCI test. Each FE simulation with a selected combination of parameters γiso 
and miso yields one data point. The peak stress from the simulated results are used for constructing the dataset. The desired dataset is 
composed of a total of 450 FE simulations. Those two parameters are selected in the ranges of − 6.8 ≤ log(γiso) ≤ − 5.1 and 1.4 ≤ miso ≤

2.4 with a uniform distribution. As the peak stress is seen to reach the saturated value after 52 cycles, only the peak stress values up to 
52 cycles are stored in the dataset. In the datasets used for constructing the GP surrogated model, we use the input X = (log(γiso),miso)

and the output Y = (σN
peak), where σN

peak is the peak stress of the cyclic number N = 1 ... 52. It should be mentioned that we use log(γiso)

instead of γiso as the input. This is due to that the values of γiso and miso are not in the same order of magnitude, which could lead to the 
inaccuracy of the surrogate model. 

Using the datasets generated by the FE simulations, the GP surrogate model is trained in the GPytorch package. To evaluate the 
effectiveness of the surrogate, another 120 FE simulations are used as the test data. The comparison between the predicted peak 
stresses from the GP and the actual peak stresses from the FE simulations is displayed in Fig. 10 (a). The Mean Squared Error on the test 
data is only 1.22 MPa, indicating that the GP surrogate model predicts the peak stress accurately. 

The next step turns to perform the Bayesian inference sampling. We draw a total of 28,000 samples and discard the first 8,000 
samples to remove the transient behavior of Markov Chain. As stated in Bayes’ theorem, the likelihood PDF and prior PDF must be 
defined. Here, the likelihood PDF is given by: 

P
(
σNpeak pred|γiso,miso

)
=
⋂65

N=1

1
sN

̅̅̅̅̅
2π

√ exp

[

−
1
2

(
σNpeak pred − σNpeak exp

sN

)2]

(28)  

where σN
peak pred is the predicted peak stress from the GP surrogate, σN

peak exp is the experimental peak stress, sN is the standard deviation 
for the experiment and can be treated as a constant value. For the prior PDF of those two parameters, we use the Uniform distributions 
U whose bounds are identical to ones used in the training of GP: 

log(γiso) ∼ U (l= − 6.8, h= − 5.1) (29)  

miso ∼ U (l= 1.4, h= 2.4) (30) 

Thus, based on Eq. (25), we can compute the PDF of parameters X = (log(γiso),miso) by: 

Fig. 10. Plot for comparison between the predicted peak stresses from GP vs actual stresses from FE simulations for (a) isotropic parameters and (b) 
kinematic parameters 

R. Du et al.                                                                                                                                                                                                              



International Journal of Plasticity 170 (2023) 103743

14

P
(

X
⃒
⃒
⃒σNpeak pred

)
=
P
(
σNpeak pred|X

)
P(X)

P
(
σNpeak pred

) (31)  

where P(σN
peak pred) is the marginalized posterior for predicted peak stress. By using the above equation with the MCMC sampling, the 

PDF of parameter log(γiso) and miso can be obtained, as illustrated in Fig. 11(a). The values corresponding to the maximum probability 
density are then taken as the inferred parameters, namely log(γiso) = − 5.49 and miso = 1.69. To evaluate the accuracy of those inferred 
parameters, we carriy out the FE simulation with the predicted parameter value. The comparison in Fig. 11(b) demonstrates the 
Bayesian inferred parameters γiso and miso can accurately reproduce the experimental results. In the subsequent section, we will use the 
identified parameters γiso and miso, in conjunction with static recovery parameters in the kinematic hardening rule, to perform FE 
simulation for constructing datasets to be employed in the surrogate model. 

4.3.2. Kinematic parameters in second class 
The kinematic hardening parameters (r0, φs, ω1, ω2 and m) in second class are used to describe the relaxation curves in the FCI test. 

To use the Bayesian inverse approach, we choose the cyclic number N = 5, 15, 25, and 70, which can reflect the characteristics of the 
stress relaxation behaviors. To build the dataset for the GP surrogate model, five parameters need more than 10000 simulations, which 
will take a huge computational time in total. The number of required simulations can be reduced by orders if one of those parameters 
can be determined in advance. Fortunately, we can determine the parameter ω2 directly from the shape of stress relaxation curves. 
During the relaxation period in one cycle, the parameter ω2 reflects the deflection time point of the static recovery term r to be a 
constant value, which corresponds to the inflection point in the relaxed stress curves. As shown in Fig. 5 (c), the inflection time for 
every loading cycle is approximately 40 seconds, resulting the value of ω2 to be 0.04. Thus, we only focus on inferring the other four 
parameters (r0, φs, ω1 and m) by using the Bayesian inverse approach. 

We again utilize FE simulations to build the GP surrogated model. The stress relaxation curves at cyclic numbers N = 5, 15, 25,70 
are extracted from the FE simulations to construct the dataset for GP surrogated model. The desired dataset is composed of a total of 
3136 FE simulations. The four parameters are selected in the ranges of − 7.0 ≤ log(r0) ≤ − 5.6, 0.01 ≤ φs ≤ 0.1, 0 ≤ ω1 ≤ 2.0and 
2.0 ≤ m ≤ 2.7with a uniform distribution. Therefore, in the datasets of constructing the GP surrogated model, we use the input 
X = (log(r0),φs,ω1,m) and the output Y = (σij), where σij is the relaxed stress at the different relaxed times trelax = [20 s, 180 s] with an 
interval of 20 s in the selected loading cycles. In other words, the output vector Y contains 36 elements as one data point. Using the 
datasets generated by the FE simulations, the GP surrogate model is trained in the GPytorch package. To evaluate the effectiveness of 
the surrogate, an additional 500 FE simulations are performed as the test data. The comparison between the predicted relaxed stresses 
from the GP and the actual peak stresses from the FE simulations is presented in Fig. 10 (b). The Mean Squared Error on the test data is 
3.4 MPa, indicating that GP surrogate model can accurately predict the relaxed behavior. 

The next step involves performing the Bayesian inference sampling. Similar to the previous section, 28,000 samples are drawn and 
the first 8,000 samples are discarded to eliminate the transient behavior in Markov Chain. According to Bayes’ theorem, the likelihood 
PDF and prior PDF are must be defined. In this section, the likelihood PDF is given by: 

P
(
σi,jpred|r0,φs,ω1,m

)
=
⋂

i,j

1
si,j

̅̅̅̅̅
2π

√ exp

[

−
1
2

(
σi,jpred − σi,jexp

sN

)2]

(32)  

where σi,j
pred is the predicted relaxed stress from GP surrogate, σi,j

exp is the experimental relaxed stress. For the prior PDF of those four 

Fig. 11. (a) Poster distribution of misoand log(γiso), the y axis which is the probability density value is dropped off since the absolute value is not 
important; (b) Comparison of the peak stress evolution between experiment and simulation using the identified parameters. 
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parameters, we use the following uniform distributions: 

log(r0) ∼ U (l= − 7.0, h= 5.6) (33)  

φs ∼ U (l= 0.01, h= 0.1) (34)  

ω1 ∼ U (l= 0, h= 2.0) (35)  

m ∼ U (l = 2.0, h = 2.7) (36) 

Thus, based on Eq. (25), we can compute the PDF of parameters X = (log(r0),φs,ω1,m) by: 

P
(

X
⃒
⃒
⃒σi,jpred

)
=
P
(
σi,jpred|X

)
P(X)

P
(
σi,jpred

) (37)  

where P(σi,j
pred) is the marginalized posterior for predicted relaxed stress. By using the above equation with the MCMC sampling, the PDF 

of parameters log(r0), φs, ω1 and m can be obtained, as illustrated in Fig. 12 (a). Values corresponding to the maximum probability 
density are taken as the inferred parameters, namely log(γ0) = − 5.75, φs = 0.035, ω1 = 0.41 and m = 2.26. To evaluate the accuracy 
of these inferred parameters, we perform the corresponding simulation with those parameters. The comparison in Fig. 12 (b) 

Fig. 12. (a) Poster distribution shapes of log(r0), φs, ω1 and m; and (b) stress evolution comparison between experiment and simulation by the 
identified parameters 

Fig. 13. Comparison between experimental and simulated relaxation curve after low cycle fatigue: (a) relaxed time = 1000 s and (b) relaxed time =
10 h 
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demonstrates the Bayesian inferred parameters r0, φs, ω1, m, together with ω2 can effectively reproduce the experimental results. 
As shown in Fig. 6, after the relax time of 1000 s, the relaxed stress maintains as a constant value, indicating that on further static 

recovery effect is present. Consequently, the value of t0 = 1000 s can be obtained directly from the long creep test after fatigue. This 
test can also be used to verify the predictability of other parameters, as demonstrated by the simulated and experimental comparison in 
Fig. 13. Table 5 displays the identified parameters. 

4.4. Verification of the constitutive model by multi-axial stress test 

The ultimate goal of this study is to develop a robust constitutive model for effective utilization in inelastic analysis to assess the 
structural integrity. Machine learning approach has been served as an efficient optimization tool to obtain accurate parameter values 
from experimental data of uniaxial tests. however, structural materials are typically subjected to multi-axial stress states during 
deformation. Thus, it is imperative to verify the predictability of our modified Chaboche model under such multi-axial stress condi-
tions. Previous studies have successfully used notched specimens to investigate the high-temperature fatigue behavior of titanium alloy 
(Gallo et al., 2015), creep-fatigue evaluation of 9Cr-1Mo steel (Ando et al., 2014), and thermomechanical fatigue life prediction of 
nickel-based single crystal superalloys (Wang et al., 2019). These studies have demonstrated that notched specimens can effectively 
represent typical deformations observed in real components. Another type of multiaxial loading condition is the tensile-torsion test 
(Taleb, 2013; Xing et al., 2019). Therefore, in this study, we selected a notched bar and tensile-torsion specimen of 316H stainless steel 
as the multiaxial deformation tests to validate the constitutive model from the uniaxial tests. 

4.4.1. Experiment conditions 

4.4.1.1. Notched bar test. The test of a notch bar for 316H stainless steel was carried out in the MTS test machine at 550 ◦C. Fig. 14 (a) 
gives the geometry of the used specimen and Fig. 14 (b) displays the strain-controlled loading process. The axial strain in Fig. 14 (b) 
was defined by εaxi = Δl/linitial, where Δl and linitial were displacement and the initial length of extensometer, respectively. The initial 
length of the extensometer was set as 12 mm. The strain-controlled loading process consists of the following three stages: low cycle 
fatigue, strain holding, and creep fatigue interaction. For the low cycle fatigue stage, the axial strain rate was 1× 10− 3s− 1, the axial 
strain amplitude Δεaxi/2 was 0.3%, and the total cycling number was set to 100. During the strain-holding stage, the specimen was held 
at 0.3% axial strain for one hour. For the creep fatigue interaction stage, the axial strain rate and the axial strain amplitude were 
identical to the low cycle fatigue; while the axial strain was held at 0.3% for three minutes during each cycle, and the total cycling 
number was set to 50. Similar to the definition of axial strain, we defined axial stress as σaxi = F/S, where F was the reaction force and S 
was the initial section area in the middle of the specimen. From the test machine, we output axial stress and axial strain during the 
whole loading process. 

Fig. 14. Testing condition for notched specimen: (a) geometry of the specimen; (b) loading diagram.  
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4.4.1.2. Tensile-torsion test. The tensile-torsion test was conducted using the MTS test machine at 550 ◦C. A smooth solid bar was 
chosen, and its detailed geometry is illustrated in Fig. 15 (a). Fig. 15 (b) depicts the strain-controlled cyclic loading process. Notably, 
both the tensile strain and the torsion strain were subjected to identical loading conditions. The strain rate was 1 × 10− 3s− 1, the strain 
amplitude was 0.5%, and the total cycling number was set to 200. It is essential be mention that the torsion strain in this context refers 
to surface torsion strain. The initial length of the extensometer was set to 25 mm. Throughout the entire loading process, data on 
tension strain, tension force, torsion strain, and torsion torque were recorded and collected from the test machine. These experimental 
results were then utilized to assess the predictability of the modified Chaboche model. 

Fig. 15. Experimental condition for tensile-torsion test: (a) geometry of the specimen; (b) loading diagram: the cyclic tensile strain and cyclic 
torsion strain share the same frequency. 

Fig. 16. Numerical model for notched bar test.  
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4.4.2. Comparison between experimental and simulation results 
To validate the effectiveness of our modified Chaboche model, we performed a numerical simulation that replicated the experiment 

in terms of geometry and loading conditions. The revised Chaboche model was implemented in the UMAT subroutine for these 
simulations. 

4.4.2.1. Notched bar test. An axisymmetric geometric model (refer to Fig. 16) was used with a mesh size of 0.1 in the central region to 
ensure reliable convergence of results. The numerical simulations produced data on displacement and reaction force, which were then 
used to calculate the simulated axial stress and axial strain. Accordingly, the simulated results during three loading stages for the 
notched specimen are compared to the corresponding experimental results (Fig. 17). From the experimental perspective, the me-
chanical responses of the notched specimen in both the low cycle fatigue stage and the strain holding stage are similar to the response 
of uniaxial specimen. Specifically, the notched specimen in the low cycle fatigue stage exhibits initial cyclic hardening and reaches a 
saturated state after approximately 40 cycles, while in strain holding stage it displays an initial quick drop of stress and converges to a 
constant stress value after 1000 s. As shown in Fig. 17 (a, b), the simulated results can capture these mechanical responses quite well. 
For the fatigue creep interaction stage, the peak axial stress remains almost constant with the loading cycles, which differs from the 
uniaxial results. The constant peak axial stress is caused by the accumulation of equivalent inelastic strain for the notched specimen 
during the previous two stages. The simulated peak stress in the fatigue creep interaction stage also remains constant and agrees with 

Fig. 17. Comparison of notched specimen between experimental and simulated results: (a) peak axial stress evolution against loading cycles during 
low cycle fatigue stage; (b) axial stress evolution against relaxed time during strain holding stage; (c) peak axial stress evolution against loading 
cycles during fatigue creep interaction stage; and (d) hysteresis curve at 30th cycle during fatigue creep interaction stage. 
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Fig. 18. Finite element model for tensile-torsion test.  

Fig. 19. Comparison of tensile-torsion specimen between experimental and simulated results: (a) peak tensional force evolution against loading 
cycles; (b) hysteresis curve at 200th cycle for tensile loading; (c) peak torsional torque evolution against loading cycles; and (d) hysteresis curve at 
200th cycle for torsion loading. 
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the experimental value (Fig. 17 (c)). Furthermore, the comparison of the hysteresis curve at the 30th cycle of this stage in Fig. 17 (d) 
proves that a reasonable simulation is achieved. Overall, the peak stress, relaxed stress, and the shape of the hysteresis curve during the 
complex loading conditions for the notched specimen are predicted accurately by the proposed constitutive model. 

4.4.2.2. Tensile-torsion test. A cylindrical geometric model was employed to simulate the cyclic tensile-torsion deformation, as shown 
in Fig. 18. The cylinder has a diameter of 12 mm and a corresponding length of 25 mm, which is identical to the initial length of the 
extensometer. To ensure the reliable convergence of results, an element mesh size of 1.0 was selected. From the numerical simulations, 
we obtained data on the tensile and torsion strains, as well as the tensional force and the torsional torque. These simulated results were 
then compared to the corresponding experimental results, as presented in Fig. 19. From the experimental perspective, the cyclic 
hardening behaviors of the tensile-torsion deformation resemble the response of uniaxial specimen. Notably, both the tensile and 
torsion loading directions exhibit initial cyclic hardening, reaching a saturated state after approximately 50 cycles. These mechanical 
responses are effectively replicated by the simulated results, as shown in Fig. 19 (a, c). However, it is important to note for the first 
loading cycle, the absolute value of valley torsional force is 50% lower than the peak torsional force, a behavior that cannot be 
captured by our proposed model. Nevertheless, as the loading cycle increases, the difference between the absolute value of valley 
torsional force and the peak torsional force decrease. Moreover, the hysteresis curves at the saturated cycle for both tensile and torsion 
directions exhibit good agreement with the corresponding experimental results. Thus, the proposed constitutive model demonstrates a 
satisfactory ability to predict the cyclic tensile-torsion behavior. 

In summary, the proposed model has demonstrated its suitability for structural analysis through the analysis of notched defor-
mation and tensile-torsion deformation. The model’s ability to effectively predict mechanical responses in these deformation scenarios 
provides confidence in its applicability for assessing the behavior of structural components under various loading conditions. 

5. Temperature dependent material model 

It is important to note that the current constitutive model is focused solely on the working temperature of fast reactor – 550 ◦C. In 
respect to the mechanical responses at other temperatures, we have conducted low cycle fatigue tests at 25 ◦C, 400 ◦C, 500 ◦C and 
600 ◦C, respectively. The mechanical responses of the low cycle fatigue test at those different temperatures are compared in Fig. 20. It 
is evident that both the saturated peak stress and the number of cycles to the saturated state are influenced by temperature. Specif-
ically, the saturated peak stresses within the temperature range of 500 ◦C to 600 ◦C surpass the values at 25 ◦C and 400 ◦C. This 
phenomenon can be attributed to the presence of the dynamic strain aging (DSA) effect, as reported by Koo and Yoon (2020). In 
addition, the initial peak stress decreases with rising temperature, owing to the variations in yield stress. 

To simulated the evolution of peak stress over a wide temperature range, we calibrated the initial yield stress σ0, as well as the 

Fig. 20. Comparison of the experimental results for low cycle fatigue test at the temperature of 25 ◦C, 400 ◦C, 500 ◦C, 550 ◦C and 600 ◦C: evolution 
of peak stress 

Table 6 
Obtained parameters values at discrete temperatures by proposed approach.   

Units 25 ◦C 400 ◦C 500◦C 550 ◦C 600 ◦C 

σ0 MPa 153.0 95.1 85.3 83.2 70.0 
Q MPa 27.0 93.2 102.8 101.2 122 
b - 12.1 2.0 7.8 5.3 3.0  
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isotropic hardening parameters Q and b at different temperatures. Those parameters are dependent on temperature, as illustrated in 
Table 6. By using these temperature-dependent parameters, the simulated peak stress effectively captures the experimental peak stress 
evolution across various temperatures, as demonstrated in Fig. 21. For the other types of parameters, such as the visco-plastic and static 
recovery parameters, should also exhibit temperature-dependent behavior. To determine the values of these parameters, a broader 
range of experiments, including fatigue creep interaction tests, is imperative across various temperatures. This extensive experimental 
campaign constitutes an aspect of future work. Additionally, machine learning offers an approach for interpolating parameters’ values 
at intermediate temperatures, surpassing the linear interpolation method advocated by ASME (2023). 

6. Conclusions 

In this study, a modified Chaboche constitutive model was proposed to describe the fatigue creep behaviors of 316H stainless steel 
at the temperature of 550 ◦C. The Bayesian inference method was employed to identify the parameters of static recovery terms in the 
proposed model. The main conclusions are summarized:  

(1) Based on the mechanism of static recovery, a modified visco-plastic constitutive model within the framework of the Chaboche 
model is proposed by improving the static recovery term in both kinematic and isotropic hardening rules. 

Fig. 21. Comparison between the simulated and experimental peak stress evolution for the low cycle fatigue tests at different temperatures: (a) 
25 ◦C; (b) 400 ◦C; (c) 500 ◦C and (d) 600 ◦C 
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(2) The modified Chaboche model, which incorporates the effect of relaxation time on static recovery, can effectively describe the 
relaxation behavior of 316H stainless steel under cyclic strain-controlled loading conditions at the temperature of 550 ◦C. In 
addition, the cyclic relaxation behaviors under the multi-axial stress state, both with tensile tests of notched bar and coupled 
tension-torsion tests, can be well predicted by the proposed model.  

(3) The parameters related to the static recovery terms can be effectively identified by using the Bayesian inference method. At 
550 ◦C, 316H stainless steel exhibits a cyclic-dependent stress relaxation behavior before around 50 cycles under the fatigue 
creep interaction. Furthermore, the stress during relaxation ceases to decrease after a holding time of 1000 s. 
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