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Abstract When a force test is conducted in a shock tunnel, vibration of the Force Measurement

System (FMS) is excited under the strong flow impact, and it cannot be attenuated rapidly within

the extremely short test duration of milliseconds order. The output signal of the force balance is

coupled with the aerodynamic force and the inertial vibration. This interference can result in inac-

curate force measurements, which can negatively impact the accuracy of the test results. To elimi-

nate inertial vibration interference from the output signal, proposed here is a dynamic calibration

modeling method for an FMS based on deep learning. The signal is processed using an intelligent

Recurrent Neural Network (RNN) model in the time domain and an intelligent Convolutional

Neural Network (CNN) model in the frequency domain. Results processed with the intelligent mod-

els show that the inertial vibration characteristics of the FMS can be identified efficiently and its

main frequency is about 380 Hz. After processed by the intelligent models, the inertial vibration

is mostly eliminated from the output signal. Also, the data processing results are subjected to error

analysis. The relative error of each component is about 1%, which verifies that the modeling

method based on deep learning has considerable engineering application value in data processing

for pulse-type strain-gauge balances. Overall, the proposed dynamic calibration modeling method

has the potential to improve the accuracy and reliability of force measurements in shock tunnel

tests, which could have significant implications for the field of aerospace engineering.
� 2023 Production and hosting by Elsevier Ltd. on behalf of Chinese Society of Aeronautics and

Astronautics. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

With rapid developments in the aerospace industry, research

into hypersonic vehicles is now highly prevalent internation-
ally. To reduce the risk and cost of developing a new hyper-
sonic vehicle, it is necessary to conduct ground tests in a
high-enthalpy shock tunnel to test its aerodynamic perfor-
mance.1–3 As one of the most basic and important techniques

in shock-tunnel tests, force measurement is an important way
to obtain the aerodynamic data of an aircraft, and its measure-
ment accuracy will directly affect the evaluation of aerody-
namic characteristics.4

Measuring accurately the aerodynamic forces acting on a
hypersonic vehicle in a millisecond shock tunnel still involves
many key technical problems, the main one being the inertial
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Fig. 1 Photo of JF-12 shock tunnel.
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vibration of the Force Measurement System (FMS), the main
elements of which are the model, the wind-tunnel balance, and
the supporting structure.5–7 When a force test is carried out in

a shock tunnel, disturbance of the complex flow field induces
the inertial vibration with low frequency and high amplitude
of the FMS, and the balance signal is mixed with the inertial

vibration signals of the FMS, which makes it difficult to distin-
guish the dynamic characteristics of the aerodynamic signals
directly and accurately. Therefore, it is very important to find

a method for eliminating inertial vibration interference, pro-
vide reliable aerodynamic data, and develop highly accurate
force measurement technology for developing hypersonic
vehicles.

To eliminate inertial vibration interference from balance
output signals, much research has been conducted and various
special balance technologies have been proposed. Currently,

there are three main methods for improving force measure-
ment technology, the first involving the development of the
new FMS. In some such approaches, the natural frequency

of the FMS is enhanced by increasing its stiffness or improving
its structure, thereby accelerating the attenuation of its inertial
vibration and suppressing interference of the balance signal as

much as possible; examples include the stress-wave balance,
the piezoelectric balance, the magnetic suspension balance,
the free flight technique, and the pulse-type strain-gauge bal-
ance. However, the stress-wave balance is greatly affected by

unknown factors, so there is no assurance that the stress wave
generated by the model can be transmitted effectively to the
sensor of the balance.8–12 Also, the stability of the piezoelectric

balance based on piezoelectric ceramics is relatively poor and
cannot satisfy actual test commands.13 Li et al. designed the
integrated force tests of balance and supporting structure by

using magnetic suspension balance, which reduced the interfer-
ence of flow field caused by FMS. 14,15 Furthermore, the accu-
racy of free flight technique is limited by the high-speed

camera, and the technique is still developing.16–19 Compared
with the above technique, the pulse-type strain-gauge balance
is more suitable for force tests in shock tunnel because of its
improved dynamic performance, that is, higher accuracy and

stronger stability.20–22 Therefore, there is a bottleneck to elim-
inate the influence of inertial vibration through developing a
new FMS.

The second method is to eliminate the influence of inertial
vibration on the aerodynamic forces through signal compensa-
tion, examples being the accelerometer balance23–26 and the

inertial self-compensation balance.27–29 However, when the
frequency of the FMS vibration is close to that of the aerody-
namic signal, it is difficult to identify the aerodynamic force
accurately by self-compensation, which may lead to greater

errors and thus incorrect results.
The third method involves balance signal processing. Luo

et al. proposed a new signal decomposition method, wave sys-

tem fitting, to remove vibration waves of low frequency. To
reduce the systematic errors, they proposed a new calibration
method, weighting by cross-validation, the effectiveness of

which has been verified by force tests in a shock tunnel.30,31

Nie and Wang used wavelet transform and Hilbert-Huang
transform to process the balance signal and identified different

interference signals, but this method is not suitable for process-
ing low-frequency and short-duration signals.32 Wang et al.
applied deep learning to the FMS in an impulse facility and
proposed a new dynamic calibration method known as
Single-Vector Dynamic self-Calibration (SVDC). They used
an intelligent Convolutional Neural Network (CNN) model
to process the sample signal in the time domain, recognized

the dynamic characteristics of the inertial vibration signal,
and obtained relatively ideal aerodynamic results.33 Wang
et al. developed an intelligent identification algorithm for aero-

dynamics by combining time–frequency transform with deep
learning, and finally obtained the real aerodynamic signal.34.

In summary, it is very difficult to improve the measurement

accuracy by either improving the balance structure or using
signal compensation. Instead, the deep cross application of
artificial-intelligence technology in force tests has become a
trend that has considerable engineering significance.

The balance output signal in the time domain can offer an
effective reflection of the force states of the FMS over time. A
Recurrent Neural Network (RNN) is good at solving problems

related to time sequences, so a RNN model can be used to pro-
cess the balance output signal in the time domain for dynamic
calibration. Also, inertial vibration and aerodynamic force dif-

fer considerably in the frequency domain: the frequency of
inertial vibration is constant because it is an inherent attribute
of the FMS, whereas the frequency of aerodynamic force var-

ies with time.
Therefore, according to the different characteristics of the

balance signal in the time and frequency domains, in this
paper, we use different intelligent models and explore their dif-

ferences, so as to improve the processing performance of bal-
ance data and the reliability of intelligent models. Fig. 1
shows the part system of the JF-12 hypersonic detonation-

driven shock tunnel with long test duration (referred to herein
as the JF-12 shock tunnel).35 For the FMS of the JF-12 shock
tunnel, a series of balance signal samples were collected, and

their vibration characteristics were trained based on an RNN
model in the time domain and a CNN model in the frequency
domain. The trained intelligent models were then used to pro-

cess the balance output signal in a force test, and a reliable
quasi-steady aerodynamic signal was obtained.

2. Acquisition of balance signal samples

2.1. Early dynamic calibration study (SVDC)

To ensure accuracy in a force test, it is necessary to calibrate
the balance before the test, including both static and dynamic
calibration. Static calibration technology is now relatively

mature, but there have been few studies of dynamic calibration
to date.
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The main traditional dynamic signal generation methods
are impulse response36,37 and step response.38 Impulse
response involves using an impact hammer to hit the model

surface to generate an impulse force, but its direction and
action point cannot be controlled accurately. Step response
involves loading by hanging a weight in the fixed direction of

the balance; after the FMS is stable, the weight is released
immediately and a step unloading signal is generated. These
traditional dynamic calibration methods have strict require-

ments for the load direction, so they cannot be used for the
dynamic calibration of a shock-tunnel balance. To meet the
requirement that the balance outputs multicomponent load
signals in any direction, the SVDC technology was proposed.

This method introduces deep-learning technology that can
conduct modeling and processing for dynamic calibration in
any direction and accurately identify the aerodynamic force

coupled with inertial vibration interference.
The SVDC method generates a single vector in any direc-

tion of the balance via a steel wire connected to the FMS’s sus-

pension point. This single vector load can be decomposed
automatically into multicomponent loads according to the bal-
ance coordinate system, and the load can be output directly in

real time. After the balance output signal is stable, the steel
wire is cut immediately to generate a step load. The step-
load acquisition device based on SVDC is relatively simple
and convenient, and the magnitude, direction, and action point

of the single vector are not limited. Also, the SVDC method is
no longer dynamic calibration of the balance alone but rather
of the whole FMS. This dynamic calibration method is more

consistent with an actual shock-tunnel force test.

2.2. Data acquisition of balance signal in time domain

Considering the operating factors of the JF-12 shock tunnel,
the same step-load acquisition device based on SVDC was
built outside the shock tunnel, comprising the model, the bal-

ance, and the supporting structure. As shown in Fig. 2, the
model was a standard cone with a length of 0.75 m and a
half-cone angle of 10�, the balance was a three-component
pulse-type strain-gauge balance, and the three components
Fig. 2 Force Measurement System (FMS) and Data Acquisition

System (DAS) of balance signal.
were the normal force, the pitching moment, and the axial
force; the model and balance were supported by a cantilever
sting. The Data Acquisition System (DAS) of balance signal

comprised a NI PXIe-1071 high-performance acquisition
device, a NI PXIe-8880 controller, and a NI PXIe-4330
eight-channel capture card with a maximum sampling rate of

102.4 kS/s and 24-bit resolution. The dynamic sample data
acquisition and processing software was developed based on
the LabView Professional Development System and was cap-

able of high-precision multi-component dynamic signal
acquisition.

In this paper, dynamic calibration of the whole FMS was
conducted based on SVDC technology, and the implementa-

tion steps are shown in detail as follows:39

(1) The same FMS in Fig. 2 is built, which is assembled by

the model, the three-component pulse-type strain-gauge
balance, and the sting supporting structure.

(2) The DAS is connected to the balance output of the

FMS, and the balance signal can be recorded in real
time.

(3) Without loading, the zero-load output of the balance is

recorded by the DAS and used as the benchmark data.
(4) The steel wire is suspended at the head point on the

windward surface of the model. At this time, the signals
which contain three-component step loads output by the

FMS are recorded.
(5) Cut the steel wire when the FMS and DAS are stable.

The signals recorded by the DAS are decomposed auto-

matically, and the value, the direction and the point of
the step loads are recorded.

We collected 120 groups of the balance signal sample, and
each sample comprised two groups of data: the balance step
signal and the ideal step signal (corresponding to the input

and target data, respectively, in the intelligent model). We
selected a sample and plotted its waveform in the time domain,
as shown in Fig. 3, where the red line corresponds to the bal-
ance step signal (used to simulate the impact generated by the

shock-tunnel flow field) and the blue line corresponds to the
ideal step signal (used to simulate the simplified aerodynamic
force signal). The sampling rate was 50 kHz and the total time

for a sample was 150 ms, so the number of points per sample
was 7500. The signal was divided into two sections by the start-
ing moment of the flow field during the force test; the zero sig-
Fig. 3 Balance sample waveform in time domain (axial force).
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nal before the step corresponds to the preparation duration
before the flow field started. At approximately 55 ms, the sig-
nal has a step change, and the edge trigger time can be ignored.

Subsequently, the balance step signal contains both aerody-
namic force and inertial vibration, whereas the ideal step signal
contains no vibration signal and remains stable.

2.3. Time-frequency conversion of balance signal samples

The balance output signal collected during a force test is a typ-

ical unsteady and multifrequency impulse signal, and its wave-
form in the time domain reflects the aerodynamic trend
directly. The frequency distribution of the signal can be dis-

played in the spectrum diagram in the frequency domain,
and the vibration interference component can be distinguished
by analyzing that diagram.

As a common signal processing method, a Fourier trans-

form can decompose a signal linearly from the time domain
into the frequency domain via the triangular basis function;
similarly, an inverse Fourier transform can map a signal lin-

early from the frequency domain into the time domain. The
respective transformation equations are

F xð Þ ¼ F f tð Þ½ � ¼
Z þ1

�1
f tð Þe�ixtdt ð1Þ

f tð Þ ¼ F�1 F xð Þ½ � ¼ 1

2p

Z þ1

�1
F xð Þeixtdx ð2Þ

where x is frequency, F xð Þ is the image function of f tð Þ, and
f tð Þ is the primitive function of F xð Þ. There is an inverse rela-
tionship between signal resolution in the time domain and that
in the frequency domain: the product of the impulse width in

the time domain and the bandwidth in the frequency domain
is constant, i.e., the narrower the signal pulse in the time
domain, the wider the main band in the frequency domain.

A Fast Fourier Transform (FFT) is used to convert the
time-domain signal in Fig. 3 into the frequency domain, and
its spectrum diagram is shown in Fig. 4. As can be seen, the

main frequency of the balance step signal is approximately
380 Hz, whereas this frequency is absent from the ideal step
signal, thereby indicating that the inertial vibration frequency

of the FMS is approximately 380 Hz.
Because the time-domain signal offers a more direct reflec-

tion of the force trend, after analyzing the frequency-domain
signal, the latter is transformed into the time domain using

an Inverse FFT (IFFT). There may be some loss in the
Fig. 4 Balance sample spectrum diagram in frequency domain.
time–frequency conversion, but comparing the original bal-
ance signal with the signal after time–frequency conversion
as shown in Fig. 5, we can see that they basically coincide com-

pletely. This indicates that the loss in time–frequency conver-
sion can be ignored completely, thereby providing a
theoretical basis for the feasibility and reliability of data pro-

cessing in the frequency domain.
Therefore, the aim in this paper is to take the balance step

signal as the input data and the ideal step signal as the target

data and build an RNN time-domain model and a CNN
frequency-domain model to learn the interference features;
the intelligent models can identify and eliminate the interfer-
ence signal and output a ‘‘pure” aerodynamic signal. The

trained models are then applied to a shock-tunnel force test
to obtain aerodynamic signals without initial interference,
thereby ensuring the accuracy of the force measurement

results.
3. Dynamic calibration based on RNN time-domain model

3.1. Construction of RNN time-domain model

Feature extraction is a very important but difficult task for a
complex artificial-intelligence problem. Deep learning approx-
imates complex functions by stacking multilayer nonlinear

mappings, automatically learns hierarchical feature representa-
tions from the original data, and uses these combined features
to solve complex problems.40,41 Aimed at the vibration inter-

ference signal in the balance signal samples, the neural-
network model is built based on supervised learning in deep
learning; the intelligent model can automatically extract the
basic features of the vibration interference signal and combine

them into more-complex features so as to identify the vibration
interference signal.

As a common type of neural network in deep learning,

RNNs are used mainly to solve time-series problems and pre-
dict sequential data. The RNN model has the function of
‘‘memory” and the nodes between each two layers are con-

nected.42 As shown in Fig. 6, the input of the hidden layer
comprises the output of the input layer and the hidden layer
at the previous moment. For the current moment t, the hidden
unit ht accepts the current input-layer data xt and the previous

hidden-layer data ht�1 to generate the output-layer data ot.
Because of the existence of a retarder, the recurrent hidden
layer completes the storage and dependence by providing a

path for information transmission. Therefore, an RNN can
process time-sequence data effectively.

In the process of model training, a sample sequence that is

too long will lead to gradient disappearance and gradient
explosion during optimization. To solve this problem, Long
Short-Term Memory (LSTM) was proposed.43 LSTM adds a

‘‘gate” structure to the RNN unit and selectively affects the
state of each moment in the RNN through such structures.
It has been shown that the RNN model with the LSTM struc-
ture outperforms the standard RNN model. Meanwhile, in the

standard RNN model, the state transmission of each layer is
one way from front to back, but in practice the output at
the current moment is related to that at the previous moment

and the later state. Therefore, it is necessary to use a Bidirec-
tional RNN with LSTM (Bi-LSTM), the structure of which
is shown in Fig. 7.



Fig. 5 Verification of signal after time-frequency conversion.

Fig. 6 Unit of a Recurrent Neural Network (RNN).
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After collecting the balance signal samples, they are shuf-

fled randomly and divided into several batches. When training
the RNN time-domain model, 80 % of the samples are used to
train the model and learn the network parameters, while the

other 20 % of the samples are used for validation in verifica-
tion calibration tests.

To ensure consistent training samples and shock-tunnel

force measurement data (test samples), the balance output sig-
nal is normalized before model training, and the data are
mapped to a small specific interval. This data normalization

facilitates the model training and improves the model conver-
gence speed and calculation accuracy. After the training, to
verify the calculation results more conveniently, the data are
Fig. 7 Unit of a Bidirectional RNN with Long Short-Term

Memory (Bi-LSTM).
inverse-normalized. When normalizing the data, the balance

output signal value is mapped to [�1,1] using the linear
function:

x� ¼ x

max xj jð Þ ð3Þ

where x corresponds to the original data, max xj jð Þ is the lar-

gest absolute value in the original data, and x� corresponds
to the normalized data. After the training, the inverse-
normalization function

x ¼ max xj jð Þx� ð4Þ
is used to restore the data to the original interval.

The RNN time-domain model was constructed based on
Bi-LSTM. The number of the training samples is 120 and

the number of the points per training sample is 7500. The out-
put channels of the three-component balance are the normal
force, the pitching moment, and the axial force. Therefore,
the shapes of the input and output layer of the RNN time-

domain model are 120; 7500; 3ð Þ. After comparing the results
of different hidden layers, we confirm that the number of the
hidden layers is 3 and the layer parameters are shown in

Table 1.

3.2. Validation and error analysis of RNN time-domain model
results

As shown in Fig. 8, we select a representative validation sam-
ple and compare it with its output data processed by the RNN

time-domain model of axial force; the red and black lines rep-
resent the input and target data, respectively, and the blue line
represents the output signal processed by the RNN time-
domain model. Fig. 8 shows that most of the vibration signals

in the input data have been eliminated; the blue line almost
coincides with the black line, meaning that the output signal
Table 1 Layer parameters of RNN time-domain model.

Layer Type Output shape

Input_1 Input (120, 7500, 3)

Bi-LSTM_2 Bidirectional LSTM (120, 7500, 128)

Bi-LSTM_3 Bidirectional LSTM (120, 7500, 128)

Bi-LSTM_4 Bidirectional LSTM (120, 7500, 128)

Output_5 Output (120, 7500, 3)
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meets the requirements of the ideal step signal. The value of
the processed data is approximately 0 before the signal step
and remains constant thereafter, so the signal processed by

the RNN time-domain model achieves a steady state and most
of the vibration interference signals are eliminated.

The normal force and pitching moment are processed in the

same way, and their comparison results are shown in Fig. 9. As
can be seen, the processed results of the RNN time-domain
model are relatively good and achieve the expected effect.

Herein, we use the Mean Squared Error (MSE) as a loss
function to evaluate the data processing capability of the intel-
ligent models: the smaller the MSE, the better the quality of
the predicted test data. Fig. 10 shows how the loss of the

RNN time-domain model changes with the training time
(epoch), where the red and blue lines represent the training
and validation losses, respectively, in the model training pro-

cess. The model loss is approximately 10�2 initially, and with
more epochs it decreases gradually and becomes steady. After
20000 epochs, the model validation loss has decreased to

3� 10�5, which is deemed sufficiently small and basically

steady. This indicates that the model has converged and
reached the standard for effective dynamic calibration, thereby
verifying the feasibility of the data processing method of the
RNN time-domain model.

To evaluate more intuitively the quality of the data pro-
cessed by the RNN time-domain model, we use the relative
error d and the relative standard deviation RSD to evaluate
Fig. 8 Validation of axial force processed by RNN time-domain

model.

Fig. 9 Validation of processing
the accuracy and precision of the model. These are calculated
as

d ¼
�F� � �F

�F
� 100% ð5Þ

RSD ¼ 1
�F
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N� 1

XN
i¼1

F�
i � �F

�� �2vuut � 100% ð6Þ

We analyze the step signals in Figs. 8 and 9, i.e., the data in

the interval of 60–140 ms. Here, F
�
is the mean value of the

ideal step signal (used to represent the ‘‘true” force) and �F�

is the mean value of the results processed by the RNN time-
domain model (used to represent the approximate force).

The calculation results are given in Table 2. As can be seen,

the relative errors of the RNN time-domain model are rela-
tively small, especially that for the axial force, which is less
than 0.1%, indicating that the accuracy of the model is rela-

tively high. Meanwhile, the relative standard deviations of
the three components are also relatively small, being basically
less than 1%, indicating the high precision of the model. The

model achieves high accuracy in the overall data processing,
with that of the axial force being obviously better than those
of the normal force and pitching moment. One reason for this
is that while acquiring balance samples, the inertial vibration

characteristic of the axial force component is more obvious
and its signal periodicity is stronger, whereas the other two
components suffer greatly from environmental noise; another

reason is that the accuracy of static calibration for the axial
force is better than those for the normal force and pitching
moment. Therefore, the subsequent analysis is focused on

the axial force and not the other two components.

4. Dynamic calibration based on CNN frequency-domain model

4.1. Construction and optimization of CNN frequency-domain
model

When a force measurement is conducted in a shock tunnel, the
balance output signal is rather complex, containing the aerody-
namic force, inertial vibration, and other interference signals.

The aerodynamic force and inertial vibration of the FMS dif-
fer greatly in the frequency domain: the aerodynamic signal is
affected by the shock-tunnel flow field and other factors, so its

frequency varies with time, whereas the inertial vibration fre-
by RNN time-domain model.



Fig. 10 Loss of RNN time-domain model decreases with number of epoch.

Table 2 Relative error and relative standard deviation of RNN time-domain model.

Component F
� �F� d(%) RSD (%)

Normal force 21.955 N 21.632 N �1.47 0.582

Pitching moment 8.694 N�m 8.674 N�m �0.229 0.561

Axial force 13.489 N 13.482 N �0.0506 0.433

Fig. 11 Flowchart of a Convolutional Neural Network (CNN)

frequency-domain model.
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quency is an inherent attribute of the system; when the mass
and structure of the FMS are determined, the inertial vibration

frequency is also determined and remains stable within the test
duration. Therefore, the frequency-domain signal reflects the
inertial vibration characteristics of the FMS more accurately

in essence.
As a classic neural network in deep learning, a CNN

embodies convolutional calculations and a depth structure.

Because of its local connections, shared weights, and pooling
layer, a CNN’s complexity and training parameters are greatly
reduced, while its computing capability is very strong. CNN
models have been used widely in image recognition, sentence

classification, data fitting, and other intelligent fields.44 The
recognition of the inertial vibration feature of the FMS in
the frequency domain tends to be an image recognition prob-

lem, so we use a CNN to build a frequency-domain model for
recognizing the inertial vibration feature.

A CNN model generally contains an input layer, some hid-

den layers, and an output layer, of which the hidden layers
include convolutional, pooling, and fully connected layers. In
the model training process, the loss decreases with more
epochs, and the model converges finally through minimizing

the loss. Fig. 11 shows a flowchart of the CNN frequency-
domain model. The input and output layer comprise the bal-
ance signal samples processed by FFT and the expected results

processed by the model, respectively. The model is constructed
based on several two-dimensional convolutional neural net-
works, because the data processed by FFT in input layer is

complex, including the real and imaginary components. There-
fore, the shapes of the input and output layer of the model are
120; 2; 7500; 3ð Þ. The hidden layers comprise several convolu-

tional and pooling layers. The number and size of the convo-
lutional kernel in a convolutional layer affect the model
results to a great extent, and the pooling layer accelerates the
calculations and prevents overfitting.
In deep learning, the training accuracy and time are usually
used to evaluate the quality of a neural-network model. The

quality of a CNN model is improved mainly by adjusting the
training and structure parameters: the training parameters
are generally the specific parameters of the training process,

including the learning rate and number of epochs, while the
structure parameters are mainly some parameters in the hidden
layer, including the number of convolutional layers and the



Table 4 Comparison with different numbers of epochs of

CNN frequency-domain model.

Epoch number F
�
(N)

�F�(N) d(%) RSD (%)

10000 12.745 12.720 �0.20 2.19

50000 12.745 12.580 �1.29 1.00

100000 12.745 12.530 �1.69 0.39
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number and size of the convolutional kernel in each convolu-
tional layer. The structural and training parameters have a
decisive impact on the quality and training time of the model.

However, limited by the principle of the method, there is no
theoretical basis for how to select the parameters, so it depends
on experience. In general, we set several groups of candidate

values, and then choose the best value through test. To opti-
mize the model quality, we determine the initial training
parameters, then change the structure parameters gradually,

and finally adjust the training parameters to optimize the
model. Considering the computational cost, the number of
convolutional layers and epochs are adjusted to improve the
model results. According to the experience, we set the initial

number of convolutional layers to 64, the initial epochs to

50000, and the initial learning rate to 10�5.
The number of convolutional layers can directly affect the

training time and accuracy of the model. Increasing the num-

ber of convolutional layers can reduce the number of parame-
ters when the model achieves the same expressiveness. Keeping
the other parameters the same, we calculate the relative error

and relative standard deviation with different numbers of con-
volutional layers based on Eqs. (5) and (6). The comparison
results when the number of convolutional layers is 24, 64

and 96 are shown in Table 3.
According to Table 3, when the number of convolutional

layers increases from 24 to 96, it can be found that the relative

error increases gradually, while the relative standard deviation
decreases obviously, and the training time increases obviously.
Therefore, considering them comprehensively, the number of
convolutional layers is determined to be 64.

After determining the number of convolutional layers, the
number of epochs is optimized. Increasing the number of
epochs can improve the accuracy of the model, but the training

time will increase significantly. The relative error and relative
standard deviation with different numbers of epochs are
shown in Table 4.

Table 4 shows the results processed by the CNN frequency-
domain model when the number of epochs is 10000, 50000 and
100000 respectively. It can be seen that when the number of
epochs increases, the relative error increases, and the relative

standard deviation decreases. Therefore, we choose the num-
ber of epochs as 100000.

After the above comparison, the parameters of the CNN

frequency-domain model are optimized, and the finally num-
ber of convolutional layers and epochs are 64 and 100000,
respectively.

4.2. Validation and error analysis of results from CNN

frequency-domain model

The optimized CNN frequency-domain model is used to pro-
cess the dynamic samples. To analyze the model quality more
Table 3 Comparison with different numbers of convolutional

layers of CNN frequency-domain model.

Convolutional layer number F
�
(N)

�F�(N) d(%) RSD (%)

24 12.745 12.735 �0.08 0.94

64 12.745 12.530 �1.69 0.39

96 12.745 12.475 �2.12 0.29
intuitively, the output signal processed by the model is com-
pared with the ideal step signal in the frequency and time

domains as shown in Fig. 12, where the blue line represents
the output signal processed by the model. As can be seen, in
the frequency domain, the inertial vibration interference of

380 Hz in the input data is eliminated completely, and in the
time domain, the output signal obviously meets the require-
ment of the ideal step signal.

Similar to those with the RNN time-domain model, we cal-
culate the relative error and relative standard deviation of the
CNN frequency-domain model, as given in Table 5. The mean
of the output data processed by the model is close to that of

the ideal step signal, and its relative error is approximately
2%, which verifies that the accuracy is high and the model is
reliable. Also, the relative standard deviation is only 0.39%,

indicating that the output data are very steady during this per-
iod. Therefore, the CNN frequency-domain model has high
accuracy and precision and is very reliable for data processing.

5. Intelligent data processing of force measurements from JF-12

shock tunnel

The validation and analysis of the RNN time-domain and
CNN frequency-domain models show that they dealt very well
with the inertial vibration interference signals in the training

samples, so now we apply these two classic models to dynamic
calibration of the FMS in a shock tunnel. In order to verify the
reliability of the modeling method, a force measurement exper-
iment was carried out in JF-12 shock tunnel. The experimental

model is a standard cone, with a half-cone angle of 10
�
and a

length of 0.75 m (HSCM-2).45 Fig. 13 shows the force mea-
surement experiment in JF-12 shock tunnel.

After the force measurement experiment, the output signals
of balance were reprocessed by the RNN time-domain and
CNN frequency-domain models, and the results are shown

in Fig. 14. As can be seen, the inertial vibration of 380 Hz is
eliminated in the frequency domain, and the output signal pro-
cessed by the models is mostly free of vibration interference.

Compared with the time waveform processed by the RNN
time-domain model, that processed by the CNN frequency-
domain model is steadier. The results for the validation sample

in Fig. 12 are better than those for the test sample in Fig. 14,
the main reason being that the test signal is more complex and
the real aerodynamic signal is not absolutely steady; there is
still a certain amount of deviation between the processed signal

and the ideal step signal.
Similar to the data processing method for the training sam-

ples, we calculate the relative deviation (RD) and the relative

standard deviation (RSD) for the RNN time-domain and
CNN frequency-domain models. The results in Table 6 show



Fig. 12 Validation of axial force processed by CNN frequency-domain model.

Table 5 Relative error and relative standard deviation of

CNN frequency-domain model.

Component F
�
(N)

�F�(N) d(%) RSD (%)

Axial force 12.745 12.530 �1.69 0.39

Fig. 13 Force test in JF-12 shock tunnel.

Fig. 14 Comparison of axial force processed by RNN
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that after the force measurement signal is processed by these

two intelligent models, the relative error is sufficiently small,
indicating that the current method has high accuracy in pro-
cessing the shock-tunnel balance signal and can recognize the

inertial vibration features of the FMS effectively. Deep-
learning modeling based on an RNN in the time domain and
a CNN in the frequency domain has high application value
in processing dynamic force measurement signals from shock

tunnels, and we will continue to carry out more in-depth
research on the cross-application of deep-learning technology
in dynamic signal analysis. The next step in model training will

be to increase the numerical number of samples. Meanwhile, in
the process of sample acquisition, the environmental noise can
be eliminated properly to ensure consistency between training

and test samples to improve the model quality.
time-domain and CNN frequency-domain models.

Table 6 Comparison of RNN time-domain and CNN

frequency-domain models (axial component).

Model A
�

A
�� RD (%) RSD(%)

RNN 0.1026 0.1031 0.49 16.49

CNN 0.1026 0.1012 �1.36 6.56
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The results contain some uncertainties due to the systematic
and random errors in determining the freestream properties
and calibrating the balance, among other sources. According

to the numerical calculation method, the uncertainties can be
defined as Types A and B standard uncertainty, where the
Type A uncertainty of the modeling method is mainly from

the combined loading repeatability and error, while the Type
B uncertainty is mainly from the load source, the data acquisi-
tion system, and the calibration equipment.46 The uncertainty

ui1 and ui2 introduced by the combined loading repeatability
and error can be calculated by Eqs. (7) and (8), respectively.

ui1 ¼ 1

Xmax;i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n n� 1ð Þp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
j¼1

Xij � 1

n

Xn
j¼1

Xij

 !2
vuut � 100% i

¼ 1; 2; 3; j ¼ 1; 2; :::; n ð7Þ

where X and Xmax;i represent the load output by the balance

and the maximum design load, n represents the number of
repeated loads, and the subscript i and j represent the i compo-

nent and the j repeated load, respectively.

ui2 ¼ 1

Xmax;i

ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
j¼1

Fij � Pij

� �2vuut � 100% i ¼ 1; 2; 3; j

¼ 1; 2; :::; n ð8Þ
where F and P represent the processed load by the modeling

method and real load output by the balance, respectively.
To obtain more accurate results, we perform a preliminary

analysis of their uncertainty, and through post-processing, a

conservative assessment is that the expanded uncertainty of
axial force is about �5:0% 	 FS (95% confidence interval).
Therefore, the accuracy of the FMS based on deep learning
has been further verified.

6. Conclusions

(1) According to different characteristics of the balance sig-

nal in the time domain and the frequency domain, the
corresponding intelligent models were proposed. An
RNN model in the time domain and a CNN model in

the frequency domain were trained to process the bal-
ance signal, and the results show that the two intelligent
models recognized the inertial vibration characteristics
of the FMS effectively.

(2) The aerodynamic signals processed by the models were
steady and the relative error of each component was
about 1%. The reliability of this modeling method was

verified by comparing the results processed by the mod-
els with international standard.

(3) The proposed modeling method is universal in force tests

in shock tunnel. The RNN model and CNN model can
be used to process the complex characteristics in the time
domain and the frequency domain, respectively. The pre-

sent modeling method based on deep learning is feasible
for shock-tunnel force tests and has great engineering
value. Exploring new data processing techniques with
different neural-network models could provide more reli-

able data for research in hypersonic vehicles.
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