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Abstract 

Compressible flows typically exhibit multiple shock waves which interact with each other, 

making the detection of these shock waves crucial for various aspects of flow studies including 

construction of high-order numerical schemes (e.g., shock-fitting), adaptive grid refinement, and 

flow visualization. This study aims to effectively identify and localize multiple shock waves and 

their interaction points in two-dimensional inviscid steady and unsteady flows. A novel shock wave 

pattern recognition method based on cluster analysis is proposed, including three processes. First, a 

series of grid-cells located at the transition zones of captured shock waves are extracted using a 

shock wave detection approach based on local flow variation. Subsequently, these grid-cells are 

grouped into numerous clusters using the classical K-means clustering algorithm, with 

categorization based on nearest neighbor features. Finally, a strategy is introduced to merge relevant 

adjacent clusters and further localize the points where shock waves interact. The Bézier curve 

fitting technique is then employed to obtain the high-quality shock-lines. Several numerical cases 

demonstrate that this method achieves high localization accuracy for shock-lines while being 

minimally affected by grid type and scale variations. Moreover, it enables clear and effective 

identification of the shock interaction patterns in both steady and unsteady flows, providing an 

effective visualization means for analyzing the motion and evolution of shock wave configurations. 

 

Keywords: shock wave detection; shock-capturing; cluster analysis; shock interactions; 

compressible flows; unsteady flows 
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1. Introduction 

Shock wave detection poses a formidable challenge in the realm of computational fluid 

dynamics (CFD). As a strong discontinuity phenomenon within compressible flow fields, shock 

waves were initially approximated to be situated at the confluence region of flow variable 

iso-contours during early stages of flow field observation and visualization [1]. However, for 

complex multi-wave interaction scenarios involving contact discontinuities, expansion waves, and 

vigorous vortices, this empirical approach is susceptible to misidentifying shock waves. Therefore, 

it is imperative to develop more accurate shock wave detection techniques. 

Since the 1980s, numerous scholars have proposed various methodologies for detecting shock 

waves based on the computed flow field solutions obtained using shock-capturing methods. In 1985, 

Buning and Steger [2] suggested that iso-surfaces with a Mach number equal to one along the shock 

wave normal direction (approximately replaced by a pressure gradient direction) can be considered 

as shock wave surfaces. This approach was subsequently referred to as the shock wave detection 

method based on the normal Mach number [3], and gradually gained widespread application in flow 

visualization. Later, Liou et al. [4] introduced three filtering techniques to eliminate pseudo-shock 

waves; subsequently, Lovely and Haimes [5] successfully extended this method to detect moving 

shock waves in unsteady flows. In 1992, Pagendarm and Seitz [6] presented a special method for 

identifying shock waves based on directional derivatives of flow field density, specifically 

considering iso-surfaces with second-order directional derivative of density equaling zero as the 

shock wave fronts, while filtering noise according to first-order directional derivative of density. In 

1995, Van Rosendale [7] proposed a shock wave front fitting algorithm for two-dimensional 

unstructured grids, which aligns grid edges with shock-lines by comparing density gradients 

between grid-nodes. Then, Ma et al. [8] argued that the local weighting strategy of density gradient 

in this algorithm could be employed to identify the grid-nodes near shock waves but may require 

coupling with other flow features for more accurate identification. In 2011, Kanamori and Suzuki [9] 

applied the theory of characteristics to detect shock-lines and successfully extended it to encompass 

unsteady and three-dimensional flows [10]. This algorithm, although more intricate compared to the 

previous methods, obviates the need for empirical threshold parameters in filtering pseudo-shock 

waves. In 2013, Wu et al. [1] critically reviewed these conventional shock wave detection methods 

and highlighted that accurately identifying moving and weak shock waves poses a challenging 

research direction. 

In recent decades, artificial intelligence has emerged as a novel research paradigm for 

advancing fluid mechanics, with the application of machine learning algorithms in shock wave 

detection gaining significant attention. Some researchers [11-15] have explored the integration of 

convolutional neural networks into flow visualization to enhance the accuracy and efficiency of 

shock wave detection. These approaches rely on large-scale training data generated from 

conventional shock wave detection methods. Additionally, advancements in image edge extraction 

algorithms have led to the proposal of various two-dimensional shock wave detection techniques 
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[16-19] that effectively process numerical or experimental schlieren/shadowgraph images. For 

instance, in 2017, Akhlaghi et al. [17] introduced a novel shock wave detection method by 

analyzing the Gaussian distribution of flow parameters within numerical schlieren diagrams, which 

can be effectively applied to both continuous and rarefied flows. 

In general, the aforementioned shock wave detection methods are predominantly based on 

‘local’ criteria [20], such as analyzing the local gradients of pressure or density. This implies that 

the identification of shock wave locations is accomplished by only examining flow parameters 

within a local grid-node/cell (at most one layer of neighboring grids). However, these detection 

techniques have inherent limitations and shortcomings due to their focus on local features. On the 

one hand, they often mistakenly identify scattered data points or small line segments as shock wave 

fronts due to numerical dissipation and oscillation, resulting in noise, pseudo-shock branches, or 

gaps appearing on these fronts. On the other hand, these methods offer limited insights into shock 

wave patterns, such as regular/Mach shock interactions and shock-wall reflection. Consequently, it 

becomes challenging for these methods to automatically determine both the presence and 

approximate location of shock interaction points in the flow field. 

Recently, the shock-fitting (or shock-tracking) techniques [21-25] have been developed for 

unstructured or structured grids to address several limitations of mainstream shock-capturing 

methods in solving two-dimensional compressible flows. In order to explicitly solve 

Rankine-Hugoniot jump conditions across shock waves, shock-fitting methods typically require 

information such as the locations of shock waves and shock interaction patterns from the initial 

shock-capturing solutions. However, without manual intervention or priori knowledge, these 

aforementioned shock wave detection methods are challenging to directly implement during the 

initialization of shock-fitting methods, which significantly restricts the application of shock-fitting 

methods to complex flows. 

To address the aforementioned issue, Paciorri and Bonfiglioli [20] introduced an accurate 

detection method for shock waves and shock interactions in two-dimensional shock-capturing 

solutions, which can be effectively utilized in the shock-fitting methods [24,25]. Specifically, the 

initial step involves extracting points within shock wave regions using a conventional shock wave 

detection method [8], Subsequently, employing the Hough transform technique enables searching 

for characteristic straight lines among these points while eliminating noise points. The least squares 

method is then utilized to obtain the curves representing the shock waves. Finally, a fuzzy logic 

algorithm is applied to identify the shock wave patterns. However, this method exhibits some 

complexity during implementation and may occasionally misjudge short-length shock wave 

branches; moreover, its applicability to three-dimensional and unsteady flows remains challenging. 

In this paper, we propose a straightforward two-dimensional shock wave pattern recognition 

method based on cluster analysis, which is comprehensively described by integrating a steady flow 

example in Sect. 2. In Sect. 3, the accuracy and effectiveness of this method are demonstrated 

through various steady and unsteady compressible flow test cases. Finally, the research conclusions 

and future prospects are summarized in Sect. 4. 
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2. Two-dimensional shock wave pattern recognition method 

The novel two-dimensional shock wave pattern recognition method is exemplified through its 

application to a steady, inviscid shock reflection problem as described in [20]. Fig. 1 shows the 

geometry of computation domain, boundary conditions, and the entire density field computed using 

the shock-capturing solver introduced in [26]. In this example, the uniform free-stream Mach 

number is 𝑀∞ = 1.5, and a 10° ramp with height of 0.17𝐿 exists at the lower slide wall of the 

two-dimensional duct. The oblique shock arising from the concave corner undergoes Mach 

reflection at the upper slide wall, subsequently interacting with an expansion wave induced at the 

convex corner of the lower wall before undergoing regular reflection on the lower slide wall. 

Although this solution was computed on uniform triangular grid-cells, it should be noted that the 

present method can be applied to any type of grid-cell. The specific implementation process of this 

method will be successively introduced in the following three subsections. 

 

 

Fig. 1.  Shock reflection in a two-dimensional duct: computational domain, boundary conditions, and density 

iso-contours 

2.1. Identification of shock-cells 

Fundamentally, the present method is implemented on the grid-cells rather than the grid-points 

utilized in [20]. Initially, a three-step procedure is employed to identify a shock-cell cloud, which 

characterizes the locations of shock waves in the grid-cells, by utilizing a local density 

gradient-based shock wave detection at each grid-cell center within the shock-capturing solution. 

(i) The component of density gradient ∇𝜌 along the flow velocity vector 𝒗 is calculated for all 

grid-cells in the entire numerical domain: 

𝛿𝜌 =
𝒗

‖𝒗‖
∙ ∇𝜌 (1) 
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Due to the consideration of local flow directions, the positive and negative signs of δ𝜌 

correspond to the fluid being compressed and expanded, respectively. The flow through the 

shock wave experiences significant compressibility. Therefore, in order to eliminate regions 

with negligible density gradients, we have devised the following filtering criterion: 

𝛿𝜌 < 𝜉1 (2) 

where 𝜉1 is the filtering threshold parameter that should be set to a ‘small’ positive value. 

After conducting numerous numerical case tests, we recommend 𝜉1 = 0.5 as the default value. 

(ii) For most flow fields, the identified shock-cell cloud can generally be obtained after step (i). 

Moreover, in order to enhance the method’s universality to some extent, the grid-cells 

satisfying Eq. (3) are further eliminated: 

𝛿𝜌 < 𝜉2𝛿𝜌max
𝑛   &&  𝛿𝜌 < 𝜉3 (3) 

where &&  represents logical conjunction, 𝜉2  and 𝜉3  are the local filtering threshold 

parameters, δ𝜌max
𝑛  denotes the local maximum value of 𝛿𝜌 , and the superscript 𝑛 

determines the range of self-defined local regions for each grid-cell. Specifically, for a 

grid-cell, its local region encompasses the surrounding n-layer grid-cells including itself. In 

this study, we recommend setting 𝜉2 = 0.4, 𝜉3 = 2.0, and 𝑛 = 10 as the initial threshold 

parameters. 

(iii) The initially detected shock-bands, composed of numerous shock-cells (marked in red and blue) 

near the triple point of Mach reflection, are illustrated in Fig. 2. It should be noted that the 

presence of various noises and cavities at the edges of shock-bands is attributed to numerical 

errors arising from shock-capturing processes. To enhance the accuracy and reliability of 

subsequent cluster analysis results, an optimization process for initial shock-bands is 

conducted through two successive steps: first, the cavity-cells are added as the new shock-cells; 

second, the noise-cells are eliminated. Specifically, a cavity-cell (indicated by the green 

grid-cell in Fig. 2) refers to a non-initially detected shock-cell with all its grid-nodes located on 

 

Fig. 2.  Initially detected shock-cells near the triple point and corresponding adjustment process (the reader is 

referred to the web color version of this article) 

Shock-cells after adjustment  

Initially detected shock-cells

Noise-cell

Cavity-cell

None shock-cell
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the initial shock-band; whereas a noise-cell (depicted by the blue grid-cell in Fig. 2) represents 

an initially detected shock-cell having less than two adjacent co-edge shock-cells. 

Certainly, while we employ the conventional shock wave detection method described in step (i) 

to obtain the shock-cell cloud shown in Fig. 2, alternative detection methods discussed in [1] can be 

utilized instead. Note that by utilizing the local shock wave detection criterion outlined in step (ii), 

the mid-lines of those detected shock-bands align more closely with the actual locations of shock 

waves. Furthermore, despite the clear revelation of three shock waves through the displayed 

shock-cells in Fig. 2, automatically identifying accurate shock interaction patterns and determining 

the location of triple point remains challenging. In the subsequent subsections, we will describe how 

it becomes feasible to automatically extract the shock-lines and recognize the accurate shock 

interaction patterns through post-processing of the detected shock-cell cloud. 

2.2. Cluster analysis of shock-cells 

In this section, we will employ the cluster analysis technique to identify the spatial points 

featuring the positions of shock waves based on the detected shock-cells. 

2.2.1. K-means clustering algorithm 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Fig. 3.  Schematic diagram of K-means clustering algorithm: (a) a dataset, (b) initial cluster centers, (c) 1
st
 

clustering process, (d) update cluster centers, (e) 2
nd

 clustering process, (f) final cluster centers (the reader is 

referred to the web color version of this article) 

Cluster analysis is a generic term for a wide range of numerical methods with the common 

goal of discovering groups (or clusters) of observations that are homogeneous and separated from 
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other groups [27]. The K-means clustering algorithm [28], which has been developed for over five 

decades, is one of the most widely-used clustering algorithms in diverse fields. In this section, we 

provide a concise description of the procedures involved in the K-means clustering algorithm 

through an illustrative example depicted in Fig. 3. 

Let 𝑄 = {𝑞𝑖 | 𝑖 = 1, 2, . . . , 𝑁} be a dataset consisting of 𝑁 samples, as shown in Fig. 3(a), 

and let 𝑋 = {𝑥𝑖 | 𝑖 = 1, 2, . . . , 𝐾} denote a set of 𝐾 cluster center positions. Moreover, the set of 

samples belonging to the k
th

 cluster can be defined as: 

𝑆𝑘 = {𝑞𝑗 | 𝑗 = 1, 2, . . . , 𝑀𝑘},     𝑘 = 1, 2, . . . , 𝐾 (4) 

where 𝑀𝑘 represents the number of samples in the k
th

 cluster. The iterative calculation of cluster 

centers for the K-means clustering algorithm proceeds as follows: 

(i) The positions of initial cluster centers, denoted as 𝑋, can be determined by employing random 

sampling or other appropriate strategies. As illustrated in Fig. 3(b), two initial cluster centers 

(𝐾 = 2) are represented by red and blue X-shaped markers. 

(ii) The membership of each cluster is determined based on the criterion of minimum distance from 

the cluster centers. In Fig. 3(c), following the first clustering process, all samples are 

partitioned into two clusters marked by red and blue. It is worth noting that there are various 

algorithms for calculating the distance indicators. In this paper, we adopt the widely-used 

Euclidean distance to minimize the following cost function defined as follows: 

𝛺 = ∑ 𝑑𝑖𝑠(𝑞𝑖, 𝑥𝑘)

𝑁

𝑖=1

 (5) 

where 𝑑𝑖𝑠(𝑞𝑖, 𝑥𝑘)  measures the Euclidean distance between a sample 𝑞𝑖  and its 

corresponding cluster center 𝑥𝑘. 

(iii) Update all the cluster centers as follows: 

𝑥𝑘 =
∑ 𝑞𝑗𝑞𝑗∈𝑆𝑘

𝑀𝑘
 (6) 

The two new cluster centers after the update are illustrated in Fig. 3(d). 

(iv) Repeat steps (ii) and (iii) iteratively until convergence, where no further changes occur in all 

cluster centers. The final cluster centers obtained after the second clustering process, as shown 

in Fig. 3(e), are presented in Fig. 3(f). 

2.2.2. Cluster center initialization algorithm for shock-cells 

The K-means clustering algorithm can be easily implemented, efficiently handling large 

datasets and converging rapidly. However, in iterative clustering algorithms, the initial positioning 

of the cluster centers typically plays a crucial role in determining the final clusters [29]. In other 

words, randomly chosen initial cluster centers may lead to suboptimal results when employing the 

K-means clustering algorithm. Therefore, when clustering the shock-cells, it is crucial to carefully 

select the initial cluster centers, ensuring they are neither excessively distant from the shock-bands 
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nor overly concentrated or sparse in distribution. The initialization strategy for cluster center 

selection in shock-cells clustering is presented as follows: 

 

 

(a) 

 

(b) 

Fig. 4.  Initialization of cluster center for shock-cells: (a) schematic diagram of cluster center initialization 

algorithm for shock-cells, (b) upstream shock-cells and initial cluster centers within the region surrounding the 

triple point (the reader is referred to the web color version of this article) 

(i) The angles 𝛼𝑖𝑘 for a shock-cell 𝑖, indicated by the red triangle in Fig. 4(a), is computed as 

follows: 

𝛼𝑖𝑘 = Ang(∇𝜌𝑖, 𝒙𝑘 − 𝒙𝑖) (7) 

where ∇𝜌𝑖 represents the density gradient vector at the cell center, marked by a green arrow; 

𝒙𝑖 is the center coordinate of shock-cell 𝑖, and 𝒙𝑘 denotes the center coordinate of the k
th

 

adjacent shock-cell. Note that 𝛼𝑖𝑘 has a range of [0°, 180°]. 

(ii) Let 𝑓𝑖 be the number of satisfying the relation 𝛼𝑖𝑘 > 91°, and let 𝑚𝑖 be the total number of 

co-edge adjacent shock-cells for shock-cell 𝑖 (e.g., 𝑚𝑖 = 3 for triangle shock-cells in Fig. 4). 

Therefore, the parameter 𝑓𝑖 , constrained by 0 ≤ 𝑓𝑖 ≤ 𝑚𝑖 , can approximately indicate the 

position of shock-cells on the shock-bands: 

𝑓𝑖 = {

0,               if shock − cells approach the upstream region 
𝑚𝑖 ,            if shock − cells approach the downstream region
(0, 𝑚𝑖),    if shock − cells approach the middle of shock − bands

 (8) 

Subsequently, the shock-cell satisfying 𝑓𝑖 = 0 can be referred to as the ‘upstream shock-cell’. 

Fig. 4(b) clearly illustrates the upstream shock-cells (highlighted in yellow) present on the 

shock-bands near the triple point. 

(iii) All the centers of upstream shock-cells can be considered as the candidates of the initial cluster 

center. However, in most cases, the distribution of upstream shock-cells is excessively dense, 

as clearly shown in Fig. 4(b). Therefore, a removal procedure is necessary to obtain initial 

ik

jkj

i

Unit vector of 

at grid-cell center

Shock-cells after adjustment  

Upstream shock-cell



Initial cluster center
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cluster centers with a reasonable number and distribution. More specifically, for an upstream 

shock-cell 𝑖, the other upstream shock-cells whose corresponding center distances satisfying 

Eq. (9) are eliminated. 

‖𝒙𝑖 − 𝒙𝑗‖ < 𝜂𝐿𝑖 (9) 

where 𝒙𝑖  and 𝒙𝑗  are the center coordinates of the upstream shock-cell 𝑖 and the other 

upstream shock-cell 𝑗, respectively. 𝜂 represents the spacing coefficient that controls the 

distances between initial cluster centers, and we suggest 𝜂 = 3 in most cases. 𝐿𝑖 is the local 

grid size for the upstream shock-cell 𝑖, which is computed using Eq. (10). 

𝐿𝑖 =
∑ ‖𝒙𝑖 − 𝒙𝑘‖𝑛𝑖

𝑘=1

𝑛𝑖
 (10) 

where 𝑛𝑖 is the total number of co-edge adjacent grid-cells for the shock-cell 𝑖, 𝒙𝑖 and 𝒙𝑘 

represent the center coordinates of the shock-cell 𝑖 and its k
th

 adjacent grid-cell, respectively. 

It should be noted that the local grid size parameter 𝐿𝑖 establishes a positive correlation 

between the initial distance of centers and the grid size. Subsequently, repeat this process for 

all existing upstream shock-cells, and finally we can regard the centers of remaining upstream 

shock-cells as the initial cluster centers, as indicated by the cyan triangle symbols in Fig. 4(b). 

 

 

Fig. 5.  Result of K-means clustering for shock-cells within the region surrounding the triple point, with the 

spacing coefficient 𝜂 = 3 (the reader is referred to the web color version of this article) 

After determining the initial cluster centers, all the shock-cell centers can be considered as the 

dataset to start the K-means clustering process introduced in Sect. 2.2.1. Hereafter, we refer to a 

cluster containing multiple detected shock-cells as a ‘shock-cluster’. Fig. 5 illustrates the final 

shock-clusters and their corresponding cluster centers (marked by white circle symbols) within the 

region surrounding the triple point. Note that various colors are utilized in this paper to distinguish 

adjacent shock-clusters effectively. 

Final cluster center

Interaction 

cluster

Ordinary 

cluster

···

···
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Further, there are two details that need to be discussed in the aforementioned cluster center 

initialization algorithm. On the one hand, during the removal procedure (iii), the initial positions of 

cluster centers indeed change if the center ordering changes, and then the clustering results may also 

change. However, some numerical experiments indicate that the change of initial center positions is 

limited (usually to a few local grid scales) even if the center ordering changes. Moreover, the 

subsequent K-means clustering process will further reduce the impact of such changes. In a word, 

the change of the center ordering has little effect on the result of shock wave pattern recognition. On 

the other hand, the spacing coefficient 𝜂  introduced in Eq. (9) has great influence on the 

recognition result. Both too large and too small values of 𝜂 can affect the reasonableness of the 

number and distribution of initial cluster centers, and further cause unexpected issues. For example, 

if 𝜂 is too small, such as 𝜂 = 1, numerous initial cluster centers can be obtained, resulting in some 

unreasonable shock-clusters marked by the dashed circle boxes in Fig. 6(a). These unreasonable 

shock-clusters can further lead to misjudgment of shock wave pattern recognition. In contrast, if 𝜂 

is too large, such as 𝜂 = 8, only few initial cluster centers can be obtained as shown in Fig. 6(b), 

which is not conducive to accurate fitting of curved shock waves (introduced in Sect. 2.3.3). Note 

that there are no unreasonable shock-clusters if the distance of the initial cluster centers is too large. 

Thus, after numerous numerical experiments, we recommend 𝜂 = 3 as the initial value in most 

cases. 

 

 

(a) 

 

(b) 

Fig. 6.  Effect of the number of initial cluster centers on clustering results: (a) more initial cluster centers with the 

spacing coefficient 𝜂 = 1, (b) less initial cluster centers with 𝜂 = 8 (the reader is referred to the web color 

version of this article) 

2.3. Pattern recognition of shock waves 

2.3.1. Classification of shock-clusters 

Final cluster center

Initial cluster center

Final cluster center

Initial cluster center
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In order to accurately analyze the shock wave patterns in the subsequent procedure, the 

shock-clusters obtained in Sect. 2.2 are categorized into four groups: ordinary cluster, boundary 

cluster, interaction cluster, and end cluster, as illustrated in Fig. 7. Each shock-cluster can be 

classified based on its nearest neighbor features, including location and number of adjacent clusters, 

as presented in Table 1. 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 7.  Classification diagram of the shock-clusters: (a) ordinary cluster, (b) boundary cluster, (c) interaction 

cluster, (d) end cluster 

1) The ordinary cluster, which is only adjacent to two shock-clusters, represents the most 

prevalent shock-cluster along shock-lines within the computational domain, as shown in Fig. 5. 2) 

The end cluster, which is merely adjacent to one shock-cluster, corresponds to the termination of 

shock-lines within the computational domain. 3) The interaction cluster, which is adjacent to more 

than two shock-clusters, typically exists in the shock interaction regions within the computational 

domain. For example, Fig. 5 demonstrates three interaction clusters located in the region 

surrounding the triple point. 4) The boundary cluster, adjacent to the computational boundary (e.g., 

inlet, outlet, wall), indicates potential interactions between a shock wave and the computational 

boundary. 

Furthermore, in this paper, the boundary cluster, interaction cluster, and end cluster are 

collectively referred to as the ‘key cluster’. Despite their scarcity, these key clusters are often 

located at critical positions where significant changes occur in shock wave patterns or shapes. 

Moreover, they serve as crucial indicators for identifying shock wave patterns as described in Sect. 

2.3.2. 

Table 1  Four kinds of shock-clusters and corresponding nearest neighbor features 

Classification Location characteristics Number of adjacent clusters Frequency of occurrence 

Ordinary cluster Internal field 2 High 

Boundary cluster Adjacent to boundary ≥ 1 Less 

Interaction cluster Internal field ≥ 3 Less 

End cluster Internal field 1 Less 

2.3.2. Identification of shock wave patterns 
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The accurate identification of shock wave patterns in the computational domain, particularly 

the accuracy localization of ‘key shock points’ such as triple point and regular reflection point, 

presents a formidable challenge. In this section, we propose a novel methodology for identifying 

shock wave patterns by conducting further analysis on the shock-clusters. 

First, if necessary, merge some adjacent shock-clusters. More specifically, there are two 

situations that require a cluster merge operation. On the one hand, when the multiple interaction 

clusters are adjacent to each other as illustrated in Fig. 8(a), they should be merged into a single 

large cluster as shown in Fig. 8(b). In other words, the shock-cells originally contained in multiple 

adjacent interaction clusters will collectively belong to the same cluster. On the other hand, merge 

these adjacent boundary clusters located on the same computational boundary as shown in Fig. 8(a) 

and 8(d). For example, in the region where the shock-wall regular reflection occurs, we initially 

observe two adjacent boundary clusters, as displayed in Fig. 9(a). Following the cluster merge 

operation, a single large cluster emerges, as shown in Fig. 9(b). 

Subsequently, it is imperative to reclassify these post-merged clusters based on the criteria 

described in Sect. 2.3.3 and recalculate their centers using Eq. (6). For example, Fig. 10 

demonstrates the amalgamation of three adjacent interaction clusters depicted in Fig. 5, resulting in 

a new interaction cluster. 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 8.  Schematic diagram of pre-merge and post-merge for the shock-clusters: (a) pre-merged interaction 

clusters, (b) post-merged interaction cluster, (c) pre-merged boundary clusters, (d) post-merged boundary cluster 
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Fig. 10.  Post-merged result of shock-clusters within the region surrounding the triple point (the reader is referred 

to the web color version of this article) 

Finally, the clear identification of shock wave patterns is facilitated by the near-neighbor 

characteristics exhibited by key clusters. Fig. 11 illustrates six distinct shock wave patterns along 

with their corresponding shock points, while Fig. 12 provides a detail flowchart for identifying 

these patterns. Specifically, the identification strategy primarily encompasses the following three 

aspects: 

 

Final cluster center

Interaction 

cluster

Ordinary 

cluster

···

···

Triple point 

Shock-line

 

(a) 

 

(b) 

Fig. 9.  Results of shock-clusters within the region where the shock-wall regular reflection occurs: (a) 

pre-merged, (b) post-merged (the reader is referred to the web color version of this article) 
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Final cluster center

Boundary 

cluster
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Fig. 11.  Classification diagram of shock wave patterns and key shock points: (a) end shock point, (b) 

triple/quadruple point, (c) normal shock point, (d) regular reflection point, (e) oblique shock point, (f) inlet/outlet 

point 

 

Fig. 12.  Flowchart of shock wave pattern identification 

(i) For an end cluster, its center can be considered as the termination point of the shock-line, 

referred to as the end shock point, as shown in Fig. 11(a). 

(ii) For an interaction cluster, if it is adjacent to three or four shock-clusters, as depicted in Fig. 

11(b), its center can be considered as the triple or quadruple point resulting from shock-shock 

interactions, respectively. 

(iii) For a boundary cluster, four shock wave patterns can be identified based on the number of 
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adjacent shock-clusters and the condition of adjacent computational boundaries. 1) If a 

boundary cluster is adjacent to only one cluster and its adjacent boundary is a straight wall, as 

shown in Fig. 11(c), a normal shock wave occurs off the wall, with the center of the interface 

between the boundary cluster and straight wall serving as the normal shock point. 2) If a 

boundary cluster is adjacent to two clusters, as shown in Fig. 11(d), a regular shock reflection 

occurs; thus, the center of the interface can be considered as the regular reflection point. 3) If a 

boundary cluster is adjacent to one cluster and a wall corner, as shown in Fig. 11(e), an oblique 

shock wave may exist where this wall corner can be considered as an oblique shock point. 4) If 

a boundary cluster adjoins a non-wall boundary (e.g., inlet/outlet or non-reflecting boundary), 

as illustrated in Fig. 11(f), the shock wave crosses the boundary without reflection; thus, the 

center of the interface between boundary cluster and non-wall boundary can be considered as 

the inlet/outlet point. 

2.3.3. Curve fitting of shock-lines 

Upon identification of a two-dimensional shock interaction pattern, individual shock wave 

branches, referred to as shock-lines, can be further obtained. 

First, the shock-clusters corresponding to each shock wave can be easily obtained through the 

neighbor relationships between shock-clusters. Specifically, initiating the search from an arbitrary 

key cluster identified in Sect. 2.3.2, sequentially record all the ordinary clusters adjacent to each 

other along a shock wave branch until reaching another key cluster as termination criteria. 

Consequently, this sequence of shock-clusters represents a distinct shock wave branch. The search 

process continues to determine shock-clusters on subsequent shock wave branches until all 

shock-clusters within the flow field have been iterated. 

Then, the shock-lines can be derived by sequentially connecting the corresponding centers of 

the shock-clusters on each shock wave branch. However, it is worth noting that certain shock-lines 

may be zigzag, as shown by the solid yellow line in Fig. 10. Therefore, to address this issue 

comprehensively, we employ the well-known Bézier curve fitting algorithm [30] to effectively 

smoothen these shock-lines, which will be briefly described below. 

For a series of ordered points 𝑷0, 𝑷1, . . . ,  𝑷𝑛, the general parameterized form of its nth-order 

Bézier curve can be expressed as follows: 

𝑩𝑛(𝑥) = ∑
𝑛!

𝑖! (𝑛 − 𝑖)!

𝑛

𝑖=0

𝑷𝑖(1 − 𝑥)𝑛−𝑖𝑥𝑖 ,            𝑥 ∈ [0,1] (11) 

where 𝑷𝑖 is the control point of the Bézier curve. The curve starts at point 𝑷0 (corresponding to 

𝑥 = 0) and ends at point 𝑷𝑛 (corresponding to 𝑥 = 1). It is worth noting that the Bézier curve 

exhibits directionality, implying that distinct arrangements of control points yield diverse curves. 

Moreover, a sufficient and necessary condition for a Bézier curve to be straight lies in the 

collinearity of all control points. 
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Fig. 13.  Curve fitting of shock-lines, key shock points, and density iso-contours in the whole domain 

Hence, based on the inherent characteristics of Bézier curves, if a shock wave branch contains 

𝑛 + 1 shock-clusters, the two key shock points at both ends serve as the initiation and termination 

points for the Bézier curve, while the centers of the remaining ordinary clusters are sequentially 

employed as the control points 𝑷1~𝑷𝑛−1. Thus, fitting nth-order Bézier curves enables smoother 

representation of shock-lines 

The final detection results are compared with the density iso-contours in Fig. 13, revealing 

accurate locations of the four fitted shock-lines and five identified key shock points. These results 

demonstrate the good accuracy of the proposed method and validate the effectiveness of our shock 

wave pattern recognition strategy. 

2.4. Method summary 

 

Fig. 14.  Flowchart of cluster analysis-based shock detection method 

The overall flowchart of this two-dimensional shock wave pattern recognition method is 
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illustrated in Fig. 14, primarily encompassing three consecutive procedures: shock-cell 

identification as the fundamental step, cluster analysis as the key component, and pattern 

recognition as the core element. 

Starting from the shock-capturing solution of the two-dimensional inviscid flow filed, the 

shock-bands with a certain thickness is extracted using a shock wave identification algorithm based 

on streamwise density gradient projection. Finally, the accurate identification of key positions such 

as points of shock-shock interaction and shock-boundary interaction is achieved, ensuring high 

accuracy in both shape and position for each fitted shock-line. Importantly, this method 

demonstrates minimal dependence on manual intervention while guaranteeing accurate recognition 

and fitting from the ‘shock-band’ to the ‘shock-line’. 

3. Numerical results 

The proposed method is validated in this section through four numerical cases of compressible, 

inviscid flows to verify its accuracy, applicability, and reliability. A second-order cell-centered finite 

volume framework was employed to solve the two-dimensional Euler equations for calculating the 

following shock-capturing solutions. Specifically, the inviscid fluxes were solved using the van 

Leer scheme, and the integration in time was employed using the explicit four-step Runge-Kutta 

scheme. Previous studies have extensively validated the accuracy and robustness of this 

shock-capturing solver in various compressible flows [22,26]. 

3.1. Hypersonic flow past a semi-cylinder 

 

 

 

Fig. 15.  Hypersonic flow past a semi-cylinder: the 

computational domain, grid, and density 

iso-contours 

 Fig. 16.  Hypersonic flow past a semi-cylinder: the 

detected shock-cells, initial cluster centers, and 

clustering results 

First, a blunt-body flow problem is demonstrated to verify the accuracy of shock-lines detected 
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using the proposed method. A detached bow shock wave occurs when a uniform hypersonic inflow 

at Mach number 𝑀∞ = 20 passes through a semi-cylinder with a radius of 𝑅. Fig. 15 illustrates 

the computation domain, grid, and density iso-contours of the shock-capturing solution. The 

computation domain is discretized by 4,800 triangular cells produced by diagonalizing 

80(circumferential) × 30(radial) quadrilateral cells. It should be noted that the distribution of 

grid-cells is non-uniform, with denser grids near the semi-cylinder head and coarser grids near the 

sides. 

The grid-cells located at the bow shock wave position are effectively detected to form a 

shock-band, as shown in Fig. 16. Obviously, the thickness of this shock-band varies, corresponding 

to the shock transition zone obtained using the shock-capturing solver. The distribution of initial 

cluster centers along the shock-band is reasonable, indicating that the initialization algorithm 

described in Sect. 2.2.2 exhibits good applicability to non-uniform grids. After the cluster analysis, 

the final cluster centers are located at the middle of the shock-band, and two outlet points on the 

outlet boundary are also identified, as shown in Fig. 16. Note that although a small shock-band with 

some spurious shock-cells is detected in the high-pressure zone ahead of the stagnation point due to 

local high gradients, no shock-lines can be extracted from this shock-band since there are only two 

corresponding end clusters. This observation highlights the robustness of our method to the small 

spurious shock wave branches. 

 

 

 

 

Fig. 17.  Hypersonic flow past a semi-cylinder: the 

comparison between the detected shock-line and the 

density iso-contours 

 Fig. 18.  Hypersonic flow past a semi-cylinder: the 

comparison of shock-wall distances between Ref. 

[31], shock-fitting (S-F) solution [23], and detection 

result 

The comparison between the detected shock-line and the density iso-contours, as depicted in 

Fig. 17, indicates that the shock-line obtained using the curve fitting algorithm in Sect. 2.3.3 is 

smooth and reasonable. Additionally, Fig. 18 compares the detection results of the shock front 

positions offset from the semi-cylinder with those from [31] and the shock-fitting solution [23]. The 
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detection result at polar angle 𝜃 < 50° is accurate and has a small deviation at 𝜃 > 50° , 

suggesting that the grid scale has some influence on the position detection accuracy of bending 

shock waves. Therefore, enhancing the resolution of captured bending shock waves by refining the 

grids located at shock wave positions can effectively improve the detection accuracy of curved 

shock-lines. 

3.2. Shock reflection in a two-dimensional duct 

In order to verify the robustness of the proposed method with regard to unstructured grids with 

large scale variations, we revisit the aforementioned case of shock reflection in a two-dimensional 

duct introduced in Fig. 1. Differently, the isotropic grid used throughout the entire computational 

domain in Sect. 2 is changed to an anisotropic grid. As presented in Fig. 19(a), the anisotropic grid 

is performed along the direction of the incident shock wave, with a height of 0.002𝐿 for the first 

layer of grid-cells. Quadrilateral grid-cells are advanced five and ten layers to the left and right 

sides of the incident shock wave, respectively, with a growth rate of 1.2. Subsequently, the 

quadrilateral grid-cells on the right side are diagonalized into triangular grid-cells. Moreover, the 

grid-cells with high aspect ratios near the bottom wall boundary are highlighted in Fig. 19(b). 

Specifically, the aspect ratio for the first layer of grid-cell is 50. Quadrilateral grid-cells are 

advanced ten layers with a growth rate of 1.2, after which these cells are diagonalized. 

 

 

(a) 

 

(b) 

Fig. 19.  Shock reflection in a two-dimensional duct: the background grid and density iso-contours near (a) the 

triple point and (b) the shock-wall reflection point 
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(a) 

 

(b) 

Fig. 20.  Shock reflection in a two-dimensional duct: the shock-cells and the initial cluster centers near (a) the 

triple point and (b) the shock-wall reflection point  

Fig. 20 shows the detected shock-cells and the initial cluster centers. It is evident that despite 

the significant variation in the thickness of different shock-bands near the triple point, the initial 

cluster centers are reasonably located and distributed. This demonstrates the effectiveness of the 

previous cluster center initialization algorithm for anisotropic grids with hybrid types. Similarly, the 

results in Fig. 20(b) indicate that even when the shock wave spans across grid-cells with high aspect 

ratios, the initial cluster centers can be effectively obtained. An initial cluster center is located at the 

refinement region near the wall. Furthermore, Fig. 21 demonstrates the results following K-means 

cluster analysis. Both the interaction cluster and the boundary cluster, which can be used to 

recognize shock wave patterns, are reasonably identified. It should be noted that an unsuitable 

initialization of cluster centers tends to yield poor results when using an anisotropic grid in the 

vicinity of the shock wave interaction zone, as opposed to using an isotropic grid. For instance, the 

triple point may be located outside the shock-clusters if the initial distance of cluster centers is too 

large, which could be investigated in the subsequent research. 

 

Initial cluster center

Shock-cell

Initial cluster center

Shock-cell
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(a) 

 

(b) 

Fig. 21.  Shock reflection in a two-dimensional duct: the clustering results near (a) the triple point and (b) the 

shock-wall reflection point (the reader is referred to the web color version of this article) 

Finally, a comparison of shock-lines under the two aforementioned grid types is presented in 

Fig. 22. Both the shape and position of the four shock-lines align well with the numerically captured 

shock waves. As observed in the local enlarged plots, there are slight discrepancies in the positions 

of the two detected triple points. This discrepancy arises from differences in the initial identification 

of shock-bands, which poses a challenge to be comprehensively resolved. Fortunately, the 

deviations are confined to a few local grid scales, which is generally considered acceptable. 
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(b) 

 

(c) 

Fig. 22.  Shock reflection in a two-dimensional duct: the comparison results between the detected shock-lines 

under two grid types and the density iso-contours (a) over the whole computational domain, (b) near the triple 

point, and (c) near the shock-wall reflection point 

3.3. Supersonic flow over a double-wedge 

 

 

(a) 

 

(b) 

Fig. 23.  Supersonic flow over a double-wedge: (a) the computational domain, boundary conditions, and density 

iso-contours, (b) the background grid near the shock interaction point 

A simulation of inviscid supersonic flow over a double-wedge is presented, featuring an 

interaction between two shock waves on the same side. Fig. 23(a) illustrates the computational 

domain, boundary conditions, and density iso-contours. The two wedge surfaces both have a 

horizontal length of 𝐿, with the wedge angles of 𝜃1 = 10° and 𝜃2 = 20°, respectively. A uniform 

inflow at Mach number 𝑀∞ = 2 is successively compressed by both wedge surfaces, generating 

two oblique shock waves (S1 and S2). Subsequently, these two shock waves undergo a regular 

interaction and converge into a single shock wave (S3). The entire flow field is discretized using a 
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uniform hybrid grid consisting of 4,760 cells with an average grid edge length ∆= 0.03𝐿. Fig. 23(b) 

shows that numerous quadrilateral cells are mixed with some triangular cells near the shock 

interaction point. 

 

 

(a) 

 

(b) 

Fig. 24.  Supersonic flow over a double-wedge: (a) the detected shock-cells and initial cluster centers, (b) the 

clustering results of shock-cells (the reader is referred to the web color version of this article) 

The local distributions of detected shock-cells and initial cluster centers are shown in Fig. 

24(a), where a significant aggregation of shock-cells is clustered near the shock interaction point. 

Then, the K-means clustering process is applied to these shock-cells, and the result is depicted in 

Fig. 24(b). According to the classification criteria for shock-clusters described in Sect. 2.3.1, 

multiple ordinary clusters are distributed along each shock-band branch, while three interaction 

clusters congregate proximate to the interaction point. Given their adjacency, it becomes necessary 

to merge these interaction clusters into a single shock-cluster, as depicted in Fig. 25(a), for further 

determination of both the shock wave pattern and location of its interaction point. 

In fact, the detection accuracy of shock wave locations, especially at shock interaction points, 

is heavily dependent on flow resolution. In other words, accurately detecting shock wave locations 

becomes more feasible as the width of the shock transition zone computed using shock-capturing 

solvers decreases. The impact of grid scale on the detected shock-lines is examined below by 

creating and utilizing a medium grid (∆= 0.02𝐿) and a refined grid (∆= 0.01𝐿) to rerun flow 

simulations and conduct shock wave pattern recognition. Fig. 25(b) and (c) present the 

corresponding post-merged results for shock-clusters. As the grid is refined, an increased number of 

shock-clusters are obtained with reduced spacing between cluster centers, which is determined by 

the local grid size parameter 𝐿𝑖 of Eq. (10) in Sect. 2.2.2. 

 

                  



24   

 

(a) 

 

(b) 

 

(c) 

Fig. 25.  Supersonic flow over a double-wedge: the post-merged results for shock-clusters obtained on (a) coarse 

grid, (b) medium grid, and (c) refined grid (the reader is referred to the web color version of this article) 

 

(a) 

 

(b) 

Fig. 26.  Supersonic flow over a double-wedge: the comparison between shock-lines detected on three different 

grid scales (a) over the entire domain and (b) near the shock interaction point 

Fig. 26 compares the shock-lines detected on three different grid scales with the density 

iso-contours obtained on the refined grid, revealing a high level of consistency in most locations. 
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However, slightly larger discrepancies are observed at the interaction point. This can be attributed to 

the wider transition zone of captured shock waves when using coarser grids, leading to an early 

convergence of the two detected shock-bands (as shown in Fig. 25). In brief, this test case 

demonstrates that the recognition accuracy of the proposed method slightly depends on the grid 

scale for interaction points formed by shock waves on the same side. However, for straight shock 

waves located away from these interaction points, the recognition accuracy remains excellent and is 

minimally affected by variations in the grid scale. 

3.4. Supersonic inlet flow 

 

Fig. 27.  Supersonic inlet flow: the geometry and boundary condition 

Supersonic inlet flows are typical of scramjet engines. The geometry configuration shown in 

Fig. 27 is referenced from [32], where an inviscid supersonic inflow at Mach number 𝑀∞ = 3 

enters the engine inlet from the left side. Owing to the unique internal configuration of the inlet, the 

complex flow characterized by multiple shock wave interactions are expected to appear. To enhance 

the quality of shock-capturing solutions, an adaptive grid refinement technique is performed. The 

pressure iso-contours illustrated in Fig. 28 clearly demonstrate the captured complex flow structure 

on an unstructured grid consisting of 240,338 triangular cells. 

 

 

Fig. 28.  Supersonic inlet flow: the pressure iso-contours over the entire domain and the adaptively refined grids 

at the local zones 
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(a) 

 

(b) 

 

(c) 

Fig. 29.  Supersonic inlet flow: (a) the locally detected shock-cells and the corresponding initial cluster centers, 

and the (b) pre-merged and (c) post-merged clustering results for local shock-clusters 

The detected shock-cells shown in Fig. 29(a) demonstrate the effectiveness of the 

identification strategy described in Sect. 2.1 for multiple shock waves with varying strengths. The 

initial cluster centers are appropriately distributed on the upstream side of each shock-band branch. 

Fig. 29 also presents the pre-merged and post-merged clustering results for shock-clusters near the 

outlet. Numerous shock-clusters gather at locations where shock-shock and shock-wall interactions 

occur, and sequential merging of key clusters enables accurate identification of both the type of 

shock interaction pattern and the locations of interaction points. Fig. 30 compares the detected 

shock-lines with pressure iso-contours, revealing that all 25 shock wave branches are extracted into 

smooth shock-lines that align well with captured shock waves. In summary, this case strongly 

validates the applicability and accuracy of the proposed method in complex shock wave 

configurations. 
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Fig. 30.  Supersonic inlet flow: the global and local comparison of the detected shock-lines with the pressure 

iso-contours 

3.5. Forward-facing step problem 

A challenging test for detecting unsteady shock waves involves the numerical simulation of a 

wind tunnel with a flat forward-facing step, which is commonly used as a standard numerical 

benchmark to compare various schemes in CFD. The problem under consideration is a Mach 3 flow 

in a wind tunnel of 1 unit in width and 3 units in length. The forward-facing step is 0.2 units high 

and it is located at 2.4 units from the right end of the tunnel. Initially, the tunnel is filled with a gas 

with adiabatic coefficient of 1.4, which everywhere has dimensionless pressure 𝑝 = 1, density 

𝜌 = 1.4, horizontal velocity 𝑢 = 3, and vertical velocity 𝑣 = 0. An inflow boundary condition is 

applied at the left end of the computational domain, while an outflow boundary condition is 

imposed at the right end. Inviscid wall boundary conditions are applied along the walls of the tunnel 

and on the boundary marked by the step. Furthermore, the entire computational domain is 

discretized by 54,100 triangular cells with an average grid edge length of 0.01 units; note that the 

gird is uniform without any special refinement around the corner or at the shock wave positions. 

The computation terminates at the moment 𝑡 = 5 when a unique and complicated shock wave 

configuration is formed. 

In the evolution of the flows, initially, a leftward-propagating bow shock wave emerges ahead 

of the step. This shock wave undergoes multiple reflections on both the upper and lower walls, with 

the two shock-wall interaction patterns located near the left side of the domain transitioning from 

regular to Mach reflection. Additionally, due to over-expansion, the gas around the corner interacts 

with the step surface and generates a weak isolated oblique shock wave that eventually intersects 

with multiple reflected shock waves. 
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Fig. 31.  Forward-facing step problem: the post-merge clustering results of shock-cells at five different moments 

Although the shock waves in this problem are constantly moving and deforming, accompanied 

by intricate intersections and reflections, the strategy described in Sect. 2.1 effectively identifies the 

shock-cells. Fig. 31 shows the post-merged clustering results of the detected shock-cells at five 
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critical moments during the computation. Initially, two isolated shock waves, a normal shock point 

ahead of the step, and three end shock points are identified at time 𝑡 = 0.5. Subsequently, a regular 

reflection point on the upper wall is detected at 𝑡 = 0.7, indicating a regular shock-wall reflection 

in the flow field. As the computation proceeds, the quadruple point, outlet point, and triple point are 

sequentially identified, clearly displaying the shock wave patterns at various moments. At 

termination time 𝑡 = 5, ten key shock points (i.e., three normal shock points, three triple points, 

one quadruple point, one end shock point, one regular reflection point, and one outlet point) are 

automatically identified to establish the topological structure of the shock wave configuration. 

 

 

(a) 

 

(b) 

Fig. 32.  Forward-facing step problem: (a) the comparison between detected shock-lines and density iso-contours 

at 𝑡 = 1.5, (b) the comparison between detected shock-lines and pressure iso-contours at t = 5.0 

The comparisons between the final detected shock-lines and the shock-capturing solutions at 

two moments 𝑡 = 1.5 and 𝑡 = 5.0, as depicted in Fig. 32, demonstrate a strong agreement 

between the detection results of both approximately straight shock waves and curved bow shock 

wave with their captured counterparts. This indicates that the proposed method exhibits excellent 

reliability for various shapes of moving shock waves. Moreover, visualizing these detected 

shock-lines in a single figure facilitates an analysis of the evolution process of shock waves and 

enhances our understanding of interactions among moving shock waves. As shown in Fig. 33, the 

Mach reflection occurs earlier near the upper wall compared to near the surface of the step. After 

the moment 𝑡 = 1.5, while the bow shock wave moves slowly, there is a relatively rapid downward 

sliding motion observed for the triple point along this bow shock wave. The oblique shock wave 

induced by the rarefaction fan at the corner exhibits negligible displacement during the 

computation. 
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Fig. 33.  Forward-facing step problem: the comparison of shock-lines detected at four different moments 

4. Conclusions 

Compared to conventional shock wave detection methods, the method proposed in this paper 

can automatically identify the shock wave patterns in two-dimensional inviscid steady and unsteady 

compressible flows. First, a shock wave detection algorithm based on the local flow variables is 

performed to extract the grid-cells characterizing the locations of shock waves. Subsequently, the 

K-means clustering algorithm and a set of well-defined strategies are utilized to accurately 

determine multiple shock interaction points. Finally, the Bézier curve fitting algorithm is applied to 

obtain high-quality shock-lines. Several numerical test cases demonstrate that the recognition 

accuracy of shock-line positions is generally unaffected by the computational grid scale. For both 

interaction points induced by the shock waves on the same side and bending shock waves, the 

detection accuracy may be slightly influenced by the resolution of captured shock waves. Thus, for 

complex flows, more accurate detection results can be obtained by using refined grids. This method 

offers a high degree of automation and is applicable to any grid type, ensuring reliable and accurate 

identification of moving shock waves in complex unsteady flows. 

Given its ability to effectively identify accurate shock wave patterns, this globally-oriented 

shock wave detection method holds great potential for various flow study techniques that require 

accurate localization of shock waves, such as shock-fitting methods [21-25], adaptive grid 

refinement [33], and flow visualization [34]. Moreover, this method can be easily extended to detect 

three-dimensional individual shock wave (e.g., the bow shock wave ahead of a blunt body). On the 

other hand, for complex three-dimensional shock interaction structures, the idea of tomographic 

reconstruction can be employed to decompose the flow field into a series of two-dimensional slices. 

Thus, the proposed method in this paper enables identification of shock wave patterns on each slice 

and facilitates recognition of three-dimensional shock wave patterns. The preliminary attempts 

about three-dimensional shock wave pattern recognition can be found in [35]. Furthermore, directly 

extending the method proposed in this paper to three-dimensional flows poses a significant 

challenge. This is due to the fact that the strategy for classifying shock-clusters relies on counting 

the number of neighboring clusters, which is not effective in three-dimensions. For instance, a 
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shock-cluster could have more than four neighboring clusters and be located indiscriminately on a 

boundary, shock surface, or triple point. Consequently, it is not feasible to identify the shock wave 

pattern solely based on the number of neighboring clusters. Therefore, an alternative strategy must 

be explored for the recognition of shock wave patterns in three-dimensions. 
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