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ABSTRACT

In the present study, we investigate into the symmetry-breaking phenomenon in the wakes produced by two anti-phase pitching foils at zero
free-stream velocity. Numerical simulations are performed in a gap ratio range of 0:6 � g � 2:0 and a Reynolds number range of
70 � Re � 200. Six regions are identified in the plane ðg; ReÞ, based on distinct symmetry-breaking (or symmetry-preserving) behaviors of
the wakes. Floquet stability analysis and dynamic mode decomposition are performed on some selected cases. By means of modal analysis,
the behaviors of wakes in different regions are rationalized and the instability mechanisms of symmetry breaking in the unstable regions are
unveiled. In addition, the influence of symmetry-breaking instability on propulsive performance is also discussed.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0196194

I. INTRODUCTION

Symmetry-related problems are widely encountered in fluid
mechanics. Here, we can distinguish between two types of symmetry:
spatial (reflection or rotation) symmetry and spatiotemporal symmetry
(i.e., reflection symmetry after half a period). Symmetry breaking in
the wake is one phenomenon that is often observed in flows around
stationary and moving objects.

It is well known that such phenomenon occurs in flow past a circu-
lar cylinder, which is one classical problem of fluid mechanics. Above a
critical Reynolds number, the reflection symmetry of the steady wake
featured by a pair of separation bubbles is broken. The wake eventually
transits into a periodic vortex street with spatiotemporal symmetry. It
has been revealed by using linear stability analysis that the transition
from steady to periodic state can be described via a Hopf bifurcation.1,2

In flow past two side-by-side cylinders, six different wake patterns,
namely, steady symmetric, steady asymmetric, single bluff-body, in-
phase synchronized, anti-phase synchronized, and flip-flopping, were
identified at different values of gap distance and Reynolds number.3 The
results of global stability analysis indicated that spatial reflection symme-
try or spatiotemporal symmetry was broken when a steady anti-
symmetric mode or a harmonic mode became unstable.4–6

The wake of an oscillating cylinder in quiescent fluid possesses both
reflection symmetry and spatiotemporal symmetry. It was discovered in

experiments and simulations that one type of symmetry (or both) can be
broken when the Keulegan–Carpenter (KC) number is high enough.7–10

By using Floquet stability analysis, two types of instability, namely, syn-
chronous (S) and quasiperiodic (QP), were identified at different ranges
of Stokes number.11–13 Such study was then extended to oscillating ellip-
tic cylinders with different aspect ratios. The influence of aspect ratio on
the location of neutral stability curve in a parametric space spanned by
KC and Stokes numbers was investigated.14

The symmetry property of wakes generated by flapping foils also
attracted the attention of researchers. This is because it is closely
related to the propulsive performance of flapping-powered swimming
and flying. Here, we briefly review the studies on wakes generated by a
single flapping foil and two side-by-side pitching foils. The flapping
foils can be subjected to free-swimming (self-propelled) condition
where its speed is the result of interaction with the fluid. Or alterna-
tively, the flapping foils can be tethered in a flow with prescribed veloc-
ity. This is equivalent to the situation in which the flapping foils are
towed at a given speed. As an extreme case of the latter type, the veloc-
ity of incoming flow can be reduced to zero. This corresponds to the
situation in which a swimmer is constrained to remain at a fixed posi-
tion in water or a flyer hovers in air under the influence of gravity.

The development of deflected (asymmetric) wakes behind a single
flapping foil is a phenomenon of spatiotemporal symmetry breaking,

Phys. Fluids 36, 043610 (2024); doi: 10.1063/5.0196194 36, 043610-1

Published under an exclusive license by AIP Publishing

Physics of Fluids ARTICLE pubs.aip.org/aip/pof

 10 April 2024 13:02:36

https://doi.org/10.1063/5.0196194
https://doi.org/10.1063/5.0196194
https://www.pubs.aip.org/action/showCitFormats?type=show&doi=10.1063/5.0196194
http://crossmark.crossref.org/dialog/?doi=10.1063/5.0196194&domain=pdf&date_stamp=2024-04-10
https://orcid.org/0009-0000-7117-5332
https://orcid.org/0000-0002-4960-0221
mailto:zhangx@lnm.imech.ac.cn
https://doi.org/10.1063/5.0196194
pubs.aip.org/aip/phf


which has been reported both in experiments and in simulations. By
using Floquet analysis, this phenomenon was explained by the fact
that one synchronous anti-symmetric mode became unstable at a criti-
cal flapping frequency.15 For cases with a nonzero free-stream velocity,
the wake inclination (either leftward or rightward) was found to be
determined by the initial condition.16,17 In some recent papers, it was
also found that further increase in flapping amplitude can result in the
transition of flow-field from periodicity to chaos.18–20 At zero free-
stream velocity, however, the wake inclination was found to vary con-
tinually with time. This wake meandering was found to be random
and independent of the initial condition.21 The influence of passive
flexibility on wake transition was also addressed in some studies.22–25

The model of two side-by-side pitching foils has several sources
of biological inspirations, such as miniature fish schools, swimming jel-
lyfish, and insect wings with a clap-and-fling motion.26–29 The propul-
sive performance of such model under tethered condition in a steady
free-stream flow has been extensively studied at different values of
Strouhal number, phase difference, flapping amplitude, and separation
distance.30–35 Three distinct wake patterns, namely, separated wake,
merged wake, and transitional-merged wake, were identified.35 In the
scenario of anti-phase pitching, it was found that reflection symmetry
of the wake was broken at high Strouhal numbers.31,32 The formation
of a deflected jet was reported in a study on two side-by-side pitching
foils in a quiescent fluid.36 In a recent study on the hovering stability of
such flapper under gravitational force,37,38 it was found that although
wake symmetry can be preserved for as long as 20–30 flapping periods,
symmetry breaking was eventually triggered. The hovering of a flexible
K-shaped flyer in a vertically oscillating flow under free-flying condi-
tion was also investigated.39 It was affirmed that at certain ranges of
oscillating frequency and amplitude, wake symmetry breaking can be
suppressed by the passive pitching of the foils. In all the studies above,
the occurrence of wake symmetry breaking was found to be detrimen-
tal to either efficiency of thrust generation or postural stability.

It is worth noting that there exists an analogy between a pair of
anti-phase pitching foils with a single foil operating near the
ground.40–44 Obviously, these two configurations bear some resem-
blance in wake structure and thrust enhancement (in comparison with
a single foil operating in open space). However, one needs to be cau-
tious that such analogy is only rigorous in inviscid sense. Under the
inviscid-flow assumption, by invoking the method of images, ground
effect can be represented as a second foil which undergoes a pitching
motion out-of-phase with the original one. Furthermore, such analogy
also implies that reflection symmetry of the wake is always preserved.

In some existing studies on anti-phase pitching foils, the wake
evolution (including symmetry breaking process) was detailed. In
other studies, possible conditions for triggering wake symmetry break-
ing have been summarized, e.g., local accumulation of vorticity and
strong interaction between two parallel wakes. However, the instability
mechanisms related to symmetry breaking are still not fully under-
stood. In this paper, we investigate into this subject by using an
approach which combines direct numerical simulation (DNS), Floquet
stability analysis, and dynamic mode decomposition (DMD). The
results of this study provide some new insight into the phenomenon of
wake symmetry breaking. The novel contribution of the present work
is that it is the first attempt to study the instability mechanisms in the
interaction of two parallel thrust-producing wakes using modal analysis
methods. To the best of our knowledge, in the past such methods

have only been applied to study the interaction of two parallel drag-
producing wakes.

II. PROBLEM DESCRIPTION AND GOVERNING
EQUATIONS
A. Computational model

In this study, we consider one pair of rigid thin foils which under-
goes anti-phase pitching motion. Unlike the self-propelled system con-
sidered in the past study,37 in the present study the dual-foil system is
tethered in the fluid. A schematic view of the physical model is pre-
sented in Fig. 1. The kinematics of the flapping foils is described as

h1;2ðtÞ ¼ 6½h0 þ Ah cosð2ptÞ�; (1)

where h1 and h2 are the instantaneous pitching angles, h0 is the equilib-
rium angle, Ah is the flapping amplitude, and t is the dimensionless
time which is related to the dimensional time t� by t ¼ t�f (where f is
the flapping frequency). The dimensionless flapping period T thus
equals unity. Obviously, the configuration of the computational model
(in terms of geometry and kinematics) is symmetric with respect to the
centerline (x¼ 0).

We consider the spontaneous transition of the wake from a sym-
metric state to an asymmetric state as the result of flow instability. The
flow fields before occurrence of symmetry breaking possess the sym-
metric property defined as

uxðx; y; tÞ ¼ �uxð�x; y; tÞ;
uyðx; y; tÞ ¼ uyð�x; y; tÞ;

xzðx; y; tÞ ¼ �xzð�x; y; tÞ;
(2)

FIG. 1. Schematic diagram of the physical model. d, L, and L0 denote the distance
between the two pivot points, the chord length, and the distance from the pivot point
to the leading end, respectively; h0 and Ah denote the equilibrium angle and the
flapping amplitude; and P1 and P2 denote the pivot points of the two foils.
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where ux and uy denote the horizontal and vertical components of
velocity, and xz denotes the vorticity component in the direction per-
pendicular to x–y plane. In contrast, the flow fields of some unstable
modes in modal analysis to be discussed later possess the anti-
symmetric property defined as

uxðx; y; tÞ ¼ uxð�x; y; tÞ;
uyðx; y; tÞ ¼ �uyð�x; y; tÞ;
xzðx; y; tÞ ¼ xzð�x; y; tÞ:

(3)

B. Navier–Stokes equations

The flow around the pitching foils is assumed to be laminar and
governed by incompressible Navier–Stokes equations, which can be
written in a dimensionless form as

@u
@t

þ ðu � rÞu ¼ �rpþ 1
Re

r2uþ f ; (4a)

r � u ¼ 0; (4b)

where u is the velocity vector and p is the pressure. f is the momentum
source term which represents the interaction between the fluid and the
foils. In the immersed boundary method, which is used to solve (4), f is
implicitly determined by enforcing the no-slip condition on the surfa-
ces of the foils.

The reference length, time, and velocity used in the nondimension-
alization are L (chord length), 1=f , and Lf, respectively. The Reynolds
number Re is defined as Re ¼ L2f =�, where � is the kinematic viscosity
of the fluid. Please note that this Reynolds number is based on the flap-
ping velocity, and is different from the commonly used one which is
based on the free-stream velocity. For free-swimming or forward-flying
animals, the free-stream Reynolds number and flapping-based Reynolds
number are usually of the same order in magnitude.

Other dimensionless control parameters of the systems are: the
dimensionless distance from the pivot point to the leading end
L̂ ¼ L0=L, the gap ratio (i.e., dimensionless gap distance between the
two pivot points) g ¼ d=L, the equilibrium angle h0, and the flapping
amplitude Ah.

C. Linearized equations for the perturbation

The solution of the Navier–Stokes equations can be decomposed
into a base flow and a perturbation as

u ¼ U þ u0; p ¼ P þ p0; f ¼ F þ f 0; (5)

where U , P, and F denote the velocity, pressure, and forcing of a peri-
odic base flow, while u0; p0, and f 0 denote the small perturbations in
velocity, pressure, and forcing, respectively. The linearized equations
for the perturbation can be obtained by substituting (5) into (4), sub-
tracting from them the base flow, and dropping the nonlinear term of
velocity perturbation. The linearized equations for the perturbation are

@u0

@t
þ ðU � rÞu0 þ ðu0 � rÞU ¼ �rp0 þ 1

Re
r2u0 þ f 0; (6a)

r � u0 ¼ 0: (6b)

Similar to its counterpart f in (4a), the forcing term f 0 in (6a) is implic-
itly determined in the immersed boundary method by enforcing the
no-slip condition (i.e., u0 ¼ 0) on the surfaces of the foils.

D. Floquet stability analysis

Equation (6) can be written is a more concise form as

@u0

@t
¼ A ðUðtÞÞu0; (7)

where A is a linear operator and the base-flow velocity U is T-peri-
odic. It should be noted that in addition to the convection and diffu-
sion terms, the projection operation (for obtaining a divergence-free
velocity perturbation) is also lumped into operatorA .

According to the Floquet theory,45 the velocity perturbation can
be expressed as the summation of components by

u0ðx; tÞ ¼
X

k

ûkðx; tÞekkt ; (8)

where ûk are the T-periodic Floquet eigenfunctions and kk are the
Floquet exponents. The Floquet multipliers defined as lk ¼ ekkT sig-
nify the growth or decay of the Floquet modes over one period T. The
Floquet multipliers can be either real numbers or complex-conjugate
pairs. Instability occurs if the modulus of one Floquet multiplier is
larger than unity, or equivalently, if the real part of one Floquet expo-
nent is positive.

E. Dynamic mode decomposition

Dynamic mode decomposition (DMD) is a data-based method to
decompose time-resolved data into modes. Each mode possesses a sin-
gle characteristic frequency of oscillation and a growth rate. The DMD
modes are obtained through the eigen-decomposition of a best-fit lin-
ear operator that approximates the evolution of dynamic system state.

In this paper, the inputs of DMD analysis are snapshots of flow-
field data (i.e., x and y velocity components), which are arranged as
matricesX and Y, such that

X ¼ fxðt1Þ; xðt2Þ; … ; xðtmÞg 2 Rn�m;
Y ¼ fxðt2Þ; xðt3Þ; … ; xðtmþ1Þg 2 Rn�m:

(9)

Here, xðtiÞ are the vectors for storing flow-field data of different snap-
shots. The data are collected at time instants ti, with a uniform sam-
pling increment between snapshot pairs. n is twice the number of
mesh points andm is the number of snapshots.

In DMD analysis, a linear relationship between the two afore-
mentioned matrices is assumed such that

Y ¼ ~AX: (10)

The eigenvalues and eigenvectors of ~A are defined as DMD eigenval-
ues and DMDmodes.

III. NUMERICAL METHODS
A. Solutions of Navier–Stokes equations and linearized
equations

The direct-forcing immersed boundary method based on discrete
streamfunction formulation46,47 is used to solve the Navier–Stokes
equations and the linearized equations. The algebraic multigrid
method is used to solve the linear systems arising from numerical dis-
cretization. The code is parallelized by using the message passing inter-
face (MPI) protocol.48 Validations of the flow solver have been
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performed in some previous studies by simulating flows over station-
ary and moving objects.46,47

B. Solutions of eigenvalue problems

To compute the Floquet modes and multipliers, a method similar
to that introduced by Tuckerman and Barkley49 is used. First, the evo-
lution equation for the discretized velocity perturbation over one
period can be expressed as

u0hðt0 þ TÞ ¼ Au0hðt0Þ; (11)

where u0h denotes the vector of the spatially discretized velocity pertur-
bation (with the size of 2�M in which M is the number of grid
points). The matrix A is the propagator over one period (also known
as the linearized Poincar�e map). The operation of A on the velocity
perturbation is performed by integrating (7) over one period T.

The eigenvalues of A are the Floquet multipliers lk, and the
eigenvectors of A are the Floquet eigenfunctions ûk for an arbitrary
initial time t0. A Krylov subspace iteration with the modified Gram–
Schmidt algorithm for the orthogonalization procedure is used to
obtain the eigenvalues and eigenvectors of A.50

In this study, DMD analysis is performed by using a Python
package, PyDMD.51 An overview of the DMD algorithm implemented
in this package is provided here. In the algorithms of DMD, since the
dimension of ~A scales with the number of mesh points, it is not effi-
cient to compute ~A explicitly. Instead, the eigenvalues of a low-
dimensional matrix are used to approximate those of the original
one.52

First, the singular value decomposition (SVD) of matrix X is
performed,

X ¼ URV�; (12)

where U ¼ ½u1; u2; …; un� 2 Cn�n and V ¼ ½v1; v2; …; vm�
2 Cm�m are the unitary matrices and R 2 Rn�m is a diagonal matrix
with r1P r2P ���P rpP 0 along its diagonal, where p¼ min(n,m),
“�” denotes the conjugate transpose.

The SVD is then truncated by only considering the first r singular
values and singular vectors and matrix ~A can be approximated as

Â ¼UT
r
~AUr ¼ UT

r YVrR
�1
r 2 Rr�r ; (13)

where Ur ¼ ½u1; u2; …; ur � 2 Cn�r; Vr ¼ ½v1; v2; …; vr � 2 Cm�r

are unitary matrices and Rr 2 Rr�r , “T” denotes the transpose.
The eigenvalues l̂ j and eigenvectors v̂ j of Â can then be found,

with Âv̂ j ¼l̂ jv̂ j. The eigen-decomposition of Â in matrix form
becomes ÂV̂ ¼V̂M, where V̂ ¼½v̂1; v̂2;…; v̂ r � 2 Cr�r , and M
2 Cr�r is a diagonal matrix with l̂ j along its diagonal.

The eigen-decomposition of ~A can then be expressed as

~AUrV̂ ¼MUrV̂;
~AU ¼ UM;

(14)

where U ¼ YVrR�1
r V̂ 2Cn3r. The DMD amplitude, which deter-

mines the relative contribution of each DMD mode, is defined as
a ¼ U�xðt1Þ 2 Cr�1. In the subsequent text, the modulus of each
component of a is referred to as “amplitude of DMDmode.”

The jth DMDmode is computed by vj ¼ Uv̂ j. The eigenvalues in
another form, namely, k̂ j, are defined as

k̂ j ¼ logðl̂ jÞ=ð2pDtsÞ; (15)

where Dts denotes the sampling increments between snapshot pairs.
Imðk̂ jÞ and Reðk̂ jÞ are the oscillation frequency and growth/decay rate
of the DMDmodes, respectively.

C. Code validation

The in-house flow solver and linear stability code are validated by
performing direct numerical simulation and Floquet stability analysis
on two-dimensional flows produced by an oscillating circular cylinder.
The curve of neutral stability in the parameter space spanned by KC
number and Stokes number is determined by direct numerical simula-
tion and the result is compared with those from other Refs. 8 and 11.
The moduli of Floquet multipliers for some cases are also compared
with the reference solutions.12 It is confirmed that both the stability
boundary and the moduli of Floquet multipliers are in excellent agree-
ment with those from the references. The DMD code is validated by
applying it to transient cylinder-wake data and is benchmarked against
the DMD results from Ref. 53. More detailed information on the code
validation tests is provided in Appendix A.

IV. COMPUTATIONAL DETAILS
A. Physical parameters and performance metrics

The parameter range considered in the simulations is largely
comparable with the reference solutions.37 Here, we only consider the
scenario of zero free-stream velocity, which corresponds to the hover-
ing state of a self-propelled flyer. Three parameters for the geometry
and kinematics of the dual-foil system are fixed, i.e., L̂ ¼ 0:2; h0
¼ 0; Ah ¼ p=12.

The flapping Reynolds number and gap ratio are allowed to vary
in the ranges of 70–200 and 0:6–2:0, respectively. The primary reason
for choosing such range of Reynolds number is that we would like to
align it with that of Ref. 37, where symmetry breaking in the wake of a
dual-pitching-foil system was observed. Such Reynolds number range
also coincides with that in locomotion of small insects and small jelly-
fish.54–56 The influences of these two parameters on the symmetry-
breaking (or symmetry-preserving) behaviors of the system are the
focus of the present study.

The lateral-force coefficient Cfx and thrust coefficient Cfy are the
two metrics for quantifying propulsive performance. The definitions of
the two coefficients are

Cfx ¼
Fx

0:5ðUteÞ2L
;

Cfy ¼
Fy

0:5ðUteÞ2L
:

(16)

Here, Fx and Fy are the horizontal and vertical components of the
resultant force exerted on the dual-foil system. Ute is the maximum
trailing-edge velocity (i.e., Ute ¼ 2pf � 0:8L). Please note that the
dimensionless force components computed by solving (4) is based on
the reference velocity fL. Thus, a factor 2

ð1:6pÞ2 should be multiplied to

convert them into the coefficients defined in (16). In the subsequent
text, we also use �Cfx and �Cfy to denote time-averaged force
coefficients.
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B. Numerical settings

A rectangular computational domain of ½�20L;20L��½�24L;26L�
is used for solving Navier–Stokes equations (4). The two flapping
foils are arranged symmetrically about the line of symmetry (x¼0),
with the pivot points located at ½6d=2;6L�. A multi-block Cartesian
mesh is used in the simulations (see Fig. 2). The grids with a uniform
width of 0:005L are deployed in the vicinity of the flapping foils. The
grid width near the outer boundaries is enlarged to 0:08L. It is worth
noting that the positions of grid points are also perfectly symmetric
with respect to the line of symmetry. The same computational domain
and mesh are also used for solving the linearized equations (6). The
time step size used in the simulations is 0:001T . This time step size
can guarantee that the temporal resolution is sufficient and the maxi-
mal Courant–Friedrichs–Lewy (CFL) number is less than unity. In
solving the linear systems arising from numerical discretization, the
iterative solver stops when the residual magnitude becomes less
than 10�5.

The boundary conditions for solving Navier–Stokes equations (4)
are as follows. The no-slip boundary condition on the surfaces of the
flapping foils is enforced by using the immersed boundary method.
The constant pressure outlet boundary condition is prescribed on the
top and the bottom boundaries. The slip-wall boundary condition is
imposed on the left and the right boundaries. More specifically, the
normal velocity component and the normal gradient of the tangential
velocity component are set to zero. The direct numerical simulation is
initiated with a “no-flow” condition. The initial velocities of the entire
flow field and the two foils are set to zero. The two foils start from the
positions with either maximum or minimum pitching angles (i.e.,
6½h0 þ Ah� or6½h0 � Ah�). For some cases, the two different ways of

starting (i.e., inward or outward) may have a great influence on the
time course of wake evolution.

A periodic base flow is needed in solving the linearized equations.
The base flow is obtained by solving Navier–Stokes equations (4) on
the right half of the computational domain shown in Fig. 2, while
imposing a slip-wall (i.e., symmetric) boundary condition on the line
of symmetry. The boundary conditions on the (single) flapping foil
and on the top, right, and bottom boundaries are the same as those for
solving Navier–Stokes equations on the entire domain. A no-flow con-
dition is also used as the initial condition. Similar to the dual-foil sys-
tem, the way of starting the flapping motion may have a significant
impact on the time course of wake evolution (and also the final state of
the base flow) in some cases. The unsteady Navier–Stokes equations
(on half of the computational domain) are integrated in time until
periodicity is fully established. The base flow solution for the entire
computational domain is obtained by mirroring the solution on the
right half to the other half. This base flow solution is then recon-
structed and represented as a Fourier series with 32 Fourier modes
(corresponding to 64 time points over one period T) for later use in
solving the linearized equations. A further increase in the number of
Fourier modes is found to have an insignificant influence on the result.

In solving the linearized perturbation equations, the homoge-
neous boundary condition for the velocity perturbation is imposed on
all outer boundaries and the surfaces of the flapping foils. In solving
the eigenvalue problem by using a Krylov subspace iterative solver, the
final Hessenberg matrix is not affected by the initial velocity perturba-
tion. Here, the field of initial velocity perturbation is generated by
using random numbers between 0 and 0.001 as the initial discrete
streamfunction for the entire computational domain.

Tests have been conducted to ensure that the results of direct
numerical simulation and linear stability analysis are (almost) inde-
pendent of the grid width, time step size, and domain size. The detailed
information on such tests is provided in Appendix B.

V. RESULTS AND DISCUSSION
A. Classification of wake patterns

From the DNS results, it appears that a periodic state with reflec-
tion symmetry can be reached after a transient phase which usually
lasts 2–3 flapping periods after starting. In some cases, such periodic
state is the ultimate state of the system and symmetry breaking is never
triggered. However, in other cases, such periodic state is only a tempo-
rary state which may persist over 30–40 flapping periods. After that,
the symmetry-breaking instability sets in and the ultimate state of the
wake exhibits left-right asymmetry.

Six distinct wake patterns are identified in the parameter range of
this study, based on the ultimate state of the system. The classification
of wake patterns is summarized in the phase diagram ðg; ReÞ shown
in Fig. 3. It is seen that wake symmetry can be preserved in the region
which lies below a neutral curve of stability (i.e., region I). Above the
neutral curve, the parameter space can be partitioned into five regions
(i.e., regions II–VI) corresponding to distinct wake instability patterns.
For cases in regions II, IV, VI, and V, observed symmetry breaking sig-
nifies the incipient stage of wake transition. For cases in region III,
symmetry breaking is only observed after the occurrence of period-
doubling instability in which wake symmetry is still preserved. The
symmetry-preserving (or symmetry-breaking) behaviors in the six
regions aforementioned are detailed below.

FIG. 2. Schematic diagram of the computational domain and the multi-block
Cartesian mesh used in the simulations.
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1. Symmetry-preserving wake pattern

The symmetric wakes for cases with different gap ratios in region
I are demonstrated in Fig. 4. The profiles of vertical velocity compo-
nent in the near wake are also shown. The velocity profiles shown here
indicate that significant thrust is produced in all cases. It is seen that at
a very small gap ratio, two vortices are trapped in between the two foils
as a result of strong interaction between two vortex streets. A spike-
like velocity profile which resembles that for a single jet flow is
observed. As gap ratio increases, the interaction between two vortex
streets is weakened. The velocity profile resembles two separate jet-
flow profiles, which merge at the centerline.

2. Symmetry-breaking behaviors at small gap ratios

In region II of the diagram (with a small gap ratio and an inter-
mediate Reynolds number), the wake pattern is featured by the forma-
tion of a secondary vortex street after the symmetry-breaking
instability sets in (see Fig. 5). This secondary vortex street possesses a
much larger wavelength [as indicated by ks in Fig. 5(d)] than that of
the primary ones emanating from the trailing ends [as indicated by k
in Fig. 5(a)]. The formation of a secondary vortex street in the far wake
was also observed in flow over a circular cylinder.57–63 Despite the sim-
ilarity in these two scenarios, there exists a marked difference between
them. The secondary vortex street observed here is of thrust-

FIG. 3. The map of wake pattern classification in the two-dimensional space of
(g; Re). Different colors represent sub-zones (I–VI) with distinct symmetry-breaking/
preserving behaviors of the wake. The open symbols represent the critical points
determined by linear stability analysis. (The coordinates of these points are obtained
by interpolation such that the modulus of Floquet multiplier jlj � 1.) The black
dashed line A� B� C � D denotes the neutral stability curve, which is deter-
mined by connecting the critical points.

FIG. 4. Vorticity fields and velocity vectors of three cases with symmetric wake pattern (cases located in region I of Fig. 3): (a) ðg ¼ 0:6; Re ¼ 75Þ; (b) ðg ¼ 0:8; Re ¼ 75Þ;
and (c) ðg ¼ 1:2; Re ¼ 75Þ. The two foils are located at6½h0 þ Ah�; t ¼ 100T . The profiles of vertical velocity component at y¼ 4.0 for the three cases are also shown.
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producing (reverse K�arm�an) type, whereas the one in the wake of a cir-
cular cylinder is of drag-producing (K�arm�an) type.

In region III of the phase diagram (with a small gap ratio and a
high Reynolds number), the symmetry-breaking behavior of the wake
is featured by the formation of a secondary vortex street accompanied
by vortex-pairing and vortex-merging (see Fig. 6). Similar to the cases
in region II, the secondary vortex street possesses a much larger wave-
length than that of the primary ones. In addition to this, the vortex
pairing (merging) phenomenon appears repeatedly in the time course
of wake evolution. First, after the transient phase, a temporarily sym-
metric wake is established [see Fig. 6(a)]. Intriguingly, at downstream
positions of this figure, the vortex streets possess a wavelength which is
roughly twice of the cases in region II. This suggests that the wake has
already undergone a vortex-pairing process soon after initial starting.
Second, the formation of the secondary vortex street in the far wake is
induced by another vortex-pairing process [see Figs. 6(b) and 6(c)].
Third, the secondary vortex street eventually breaks up as a result of
vortex merging, and superlarge vortex structures emerge in the far
wake after long-term evolution [see Figs. 6(d) and 6(e)]. The vortex-
pairing (or vortex-merging) phenomenon observed here shows some
similarity with that observed in the laminar jet with a single-frequency
inflow forcing.64

3. Symmetry-breaking behaviors at intermediate gap
ratios

In region IV of the diagram (which lies above the neutral curve
with an intermediate gap ratio), a deflected wake is observed (see
Fig. 7). This asymmetric wake pattern can be easily distinguished from
the ones shown in Figs. 5 and 6. Here, vortex shedding is always syn-
chronized with the driving (flapping) motion, even after the
symmetry-breaking instability sets in. In the far wake, no large-scale
flow structure similar to the secondary vortex streets shown in Figs. 5
and 6 is observed. The inclination of the deflected wake (leftward or
rightward) is found to be dependent on the initial starting condition
(i.e., outward or inward).

4. Symmetry-breaking behaviors at large gap ratios

In region V of the phase diagram (which lies above the neutral
curve with a high gap ratio and an intermediate Reynolds number), a
symmetric wake pattern, with two vortex streets keeping a sufficiently
large distance from each other, is eventually developed. More interest-
ingly, this ultimate state can be reached by two different paths, depend-
ing on the initial condition specified. For the initial condition with
inward starting, the evolution of wake structure is shown in Fig. 8. It is

FIG. 5. Vorticity fields at various time instants in the wake evolution of ðg ¼ 0:6; Re ¼ 150Þ (a case located in region II of Fig. 3): (a) t ¼ 40T ; (b) t ¼ 70T ; (c) t ¼ 80T ; and
(d) t ¼ 90T . k denotes the wavelength of the primary vortex street.
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seen that a temporally symmetric wake pattern featured by two close-
set vortex streets is established after the transient phase [see Fig. 8(a)].
Symmetry breaking is then triggered and an incipient secondary vortex
street is formed [see Figs. 8(b) and 8(c)]. Unlike the symmetry-
breaking behaviors of the cases in region II, here the secondary vortex
street dissipates very rapidly and wake symmetry is eventually recov-
ered after long-term evolution [see Fig. 8(d)]. For the initial condition
of outward starting, the symmetric wake pattern with two separating
vortex streets is established more easily, without undergoing the
symmetry-breaking and symmetry-recovering processes (see Fig. 9).

In region VI of the phase diagram (with a high gap ratio and a
high Reynolds number), an asymmetric wake with two swaying vor-
tex streets is observed (see Fig. 10). This ultimate state can also be
reached by two different paths, depending on the initial condition.
For the initial condition of inward starting, the wake undergoes two
symmetry-breaking processes. First, a temporally symmetric wake
with two close-set vortex streets is developed after the transient
phase [similar to the one shown in Fig. 8(a)]. Such wake is unstable
and subsequently undergoes the symmetry-breaking and symmetry-
recovering processes (similar to the situation we have in region V).

FIG. 6. Vorticity fields at various time instants in the wake evolution of ðg ¼ 0:6; Re ¼ 200Þ (a case located in region III of Fig. 3): (a) t ¼ 30T ; (b) t ¼ 50T ; (c) t ¼ 80T ; (d)
t ¼ 115T ; and (e) t ¼ 250T . 2k and 4k denote the wavelengths of the vortex street after undergoing the first and second vortex-pairing processes, respectively.

FIG. 7. Vorticity fields at various time instants in the wake evolution of ðg ¼ 0:8; Re ¼ 87:5Þ (a case located in region IV of Fig. 3): (a) t ¼ 40T ; (b) t ¼ 70T ; (c) t ¼ 80T ;
and (d) t ¼ 90T .
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Please note that the symmetry-breaking process observed here bears
a resemblance to that observed in cases of region IV (rather than
region V). In other words, the asymmetric wake pattern looks simi-
lar to that shown in Fig. 7(d). After the recovery of symmetry, a
symmetric wake with two separating vortex streets is formed [simi-
lar to the ones shown in Figs. 8(d) and 9(d)]. However, unlike the
situation we have in region V, such a wake is unstable, and symme-
try breaking is triggered a second time. This eventually leads to the
emergence of two separating vortex streets with in-phase swaying
motion. For the initial condition of outward starting, a temporarily
symmetric wake with two separating vortex streets is established
soon after the transient phase. This is followed by the symmetry-
breaking process which directly results in the emergence of two vor-
tex streets with in-phase swaying motion. In other words, the

symmetry-breaking and symmetry-recovering phases aforemen-
tioned are bypassed. The ultimate wake pattern observed here looks
very similar to that reported in the studies on vortex shedding from
two side-by-side circular cylinders.4,5,65 The marked difference
between these two scenarios is that the vortex streets are of thrust-
producing (reversed K�arm�an) type here, whereas the vortex streets
are of drag-producing (K�arm�an) type in those works.

B. Floquet stability analysis

In this section, the instability mechanisms of wake symmetry
breaking are unveiled by performing Floquet analysis. To this end,
some cases corresponding to the distinct symmetry-breaking behaviors
depicted in Sec. VA are selected.

FIG. 8. Vorticity fields at various time instants in the wake evolution of ðg ¼ 1:4; Re ¼ 87:5Þ (a case located in region V of Fig. 3): (a) t ¼ 40T ; (b) t ¼ 60T ; (c) t ¼ 70T ;
and (d) t ¼ 90T . The initial positions of the foils are at6½h0 þ Ah� (inward starting).

FIG. 9. Vorticity fields at various time instants in the wake evolution of ðg ¼ 1:4; Re ¼ 87:5Þ (a case located in region V of Fig. 3): (a) t ¼ 40T ; (b) t ¼ 60T ; (c) t ¼ 70T ;
and (d) t ¼ 90T . The initial positions of the foils are at6½h0 � Ah� (outward starting).
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1. Region II

For the case of ðg ¼ 0:6; Re ¼ 150Þ (which is located in region
II), a complex-conjugate pair of Floquet multipliers crossing the unit
circle, i.e., l ¼ 0:6096 0:902i, is obtained. This indicates that the
symmetry-breaking instability associated with the wake is of quasiperi-
odic (QP) type.12,13

The base flow, real, and imaginary parts of the leading Floquet
eigenfunction, base flow plus perturbation, and DNS at one specific
phase point are illustrated in Fig. 11. Here, the flow fields are visual-
ized by using vorticity contours. The vorticity contours shown in
Fig. 11(a) indicate that the base flow possesses the symmetric prop-
erty depicted in (2). As that shown in Figs. 11(b) and 11(c), the
eigenfunction possesses the anti-symmetric property depicted in (3).
Thus, the combination of eigenfunction with base flow produces an
asymmetric flow field. In other words, the perturbation of leading
Floquet eigenfunction breaks the reflection symmetry of the flow
field if initiated with the base flow. In order to better explain the con-
nection between the eigenfunction and the DNS result, the combina-
tion of base flow with real part of the leading Floquet eigenfunction
is shown in Fig. 11(d). The flow field from DNS at an early stage of
symmetry breaking is also provided in Fig. 11(e) for comparison.
Here, “early stage of symmetry breaking” can be precisely defined by
delineating between distinct phases of wake evolution (see Sec. VC).
Since the magnitudes of eigenfunctions are smaller than those of the
base flows by one or two orders for all cases considered here, they
are multiplied by a factor with the magnitude ranging from 20 to 60,
before combining with the base flow. This multiplying factor is first
estimated as an exponential function of time by using the Floquet
multiplier. A small adjustment to it is then made for achieving a bet-
ter match between the superimposed solutions and DNS results. By
comparing Fig. 11(d) with Fig. 11(e), it is seen that the symmetry-
breaking behavior obtained in DNS can be successfully predicted by
using linear stability analysis.

From the eigenfunction vorticity fields shown in Figs. 11(b) and
11(c), a large-scale flow structure with alternately positive and negative
vorticities is clearly visible in the far wake. The presence of such flow
structure is linked with the formation of secondary vortex street in
DNS. The wavelength of this flow structure is much larger than those
of the primary vortex street. This implies that the frequency of the sec-
ondary vortex street is much lower than that of the primary one.

Here, we also compare the secondary frequency predicted by the
linear stability analysis with that from the DNS result. The period of
this secondary vortex street Ts can be estimated from the argument of
complex Floquet multiplier (h),13 namely, Ts ¼ 2pT=h � 6:45T .
Thus, the secondary frequency is approximately 0:155f . From the
power spectral density (PSD) plot for the horizontal force coefficient
obtained in DNS, a secondary frequency of 0:143f can be identified
[see Fig. 12(b)]. This value is reasonably close to that predicted by the
linear stability analysis. From the PSD plot for the horizontal force
coefficient, a “frequency splitting” phenomenon is also observed. To be
more specific, two frequencies which are very close to the primary fre-
quency f are identified. Furthermore, the frequency splitting phenome-
non is also observed in the higher-order harmonics of the primary
frequency. In the study of wake produced by an oscillating cylinder, it
was suggested that the emergence of a secondary frequency in the
symmetry-breaking process was the consequence of “beating” between
the two close-set frequencies around the primary one.14

2. Region III

For the case of ðg ¼ 0:6; Re ¼ 200Þ, which is located in region
III, a base flow with vortex pairing (i.e., with a period of 2T) is natu-
rally obtained by imposing the symmetric boundary condition. An
unpaired base flow (with a period of T) can also be obtained if a time-
delay term for suppressing vortex pairing is added to the governing
equation.64 It is reasonable to conjecture that the unpaired base flow is
unstable and susceptible to the period-doubling instability. Since such

FIG. 10. Vorticity fields at various time instants in the wake evolution of ðg ¼ 1:6; Re ¼ 140Þ (a case located in region VI of Fig. 3): (a) t ¼ 260T ; (b) t ¼ 265T ; and (c)
t ¼ 270T .
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FIG. 12. The time history of horizontal force coefficient (a) and its power spectral densities (PSD) (b) for the case of ðg ¼ 0:6; Re ¼ 150Þ. The PSD in (b) is obtained by per-
forming FFT on the time series of (a) over the interval ½150T ; 250T �.

FIG. 11. Vorticity contours and velocity vectors obtained in linear stability analysis and nonlinear simulation (DNS) for the case of ðg ¼ 0:6; Re ¼ 150Þ: (a) Basic flow; (b) and
(c) real and imaginary parts of the leading Floquet eigenfunction; (d) basic flow plus perturbation; and (e) DNS result (t ¼ 70T ). In (d), the perturbation is multiplied by a factor
of 60 before combining with the base flow. All pictures are plotted at the same phase point.
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period-doubling instability is irrelevant to the symmetry-breaking/
symmetry-preserving behaviors of the wake, linear stability analysis on
such base flow is beyond the scope of the present study.

Floquet stability analysis indicates that the paired base flow (with
a period of 2T) is also unstable. A real Floquet multiplier crossing the
unit circle on the negative x axis, i.e., l ¼ �1:336, is obtained. This
indicates that symmetry breaking in the wake is induced by another
period-doubling instability. From the eigenfunction vorticity field
shown in Fig. 13(b), it is observed that the large-scale flow structure in
the far wake possesses a wavelength which is (approximately) twice of
the vortex streets in the (paired) base flow. From Figs. 13(c) and 13(d),
it is seen that linear stability analysis can be used to reproduce the
symmetry-breaking behavior obtained in DNS. The time history of
horizontal force coefficient and its power spectral density (PSD) are
shown in Fig. 14. From the PSD plot, a frequency which is one-quarter
of the primary frequency can be identified. This further suggests that
the symmetry-breaking phenomenon and the period-doubling insta-
bility are closely related to each other.

3. Region IV

For the case of ðg ¼ 0:8; Re ¼ 87:5Þ (which is located in region
IV), a real Floquet multiplier crossing the unit circle, i.e.,
l ¼ 1:1583, is obtained. This indicates that the symmetry-breaking
instability associated with the wake is of synchronous (S) type.12,13

The base flow, leading Floquet eigenfunction, base flow plus pertur-
bation, and DNS result at one specific phase point are illustrated in
Fig. 15. Similar to the previous cases, the eigenfunction possesses the
anti-symmetric property and the perturbation of leading Floquet
mode breaks the symmetry of the flow field if initiated with the base
flow. The symmetry-breaking behavior predicted by the linear stabil-
ity analysis is also inconsistency/consistent with the DNS result [as
shown in Figs. 15(c) and 15(d)]. Unlike the previous cases, flow
structure with alternately positive and negative signs does not show
up in the eigenfunction vorticity field. It implies that no second fre-
quency emerges during the growth of wake asymmetry. This is fur-
ther supported by the time history of horizontal force coefficient and
its power spectral density (PSD) (as shown in Fig. 16). Only the

FIG. 13. Vorticity contours obtained in linear stability analysis and nonlinear simulation (DNS) for the case of ðg ¼ 0:6; Re ¼ 200Þ: (a) Basic flow; (b) (real) leading Floquet
eigenfunction; (c) basic flow plus perturbation; and (d) DNS result (t ¼ 52T ). In (c), the perturbation is multiplied by a factor of 20 before combining with the base flow. All pic-
tures are plotted at the same phase point.
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primary (flapping) frequency and its high-order harmonics can be
identified in the PSD plot.

4. Region V

For the case of ðg ¼ 1:4; Re ¼ 87:5Þ (which is located in region
V), two base flow solutions are obtained (see Fig. 17). The base flow
solution with two close-set vortex streets is termed the “compact” type
[Fig. 17(a)], while the solution in which two vortex streets keep a suffi-
ciently large distance from each other is termed the “incompact” type
[Fig. 17(b)]. The former one is obtained with the initial condition of
inward starting, while the latter one is obtained with the initial condi-
tion of outward starting. (It is interesting to note that for the cases
which lie below the neutral curve with a large gap ratio, only incom-
pact base flows are obtained regardless of the initial condition. The
results of Floquet stability analysis indicate that such base flows are
always stable.)

The incompact base flow for case ðg ¼ 1:4; Re ¼ 87:5Þ is stable.
The compact base flow is unstable, and a complex-conjugate pair of
Floquet multipliers crossing the unit circle, i.e., l ¼ 0:62996 1:0863 i, is
obtained. The base flow, real and imaginary parts of the leading Floquet
eigenfunction, base flow plus perturbation and DNS result at one specific
phase point are illustrated in Fig. 18. The eigenfunction vorticity field
shares some similarities with that of case ðg ¼ 0:6; Re ¼ 150Þ. A large-
scale flow structure with alternatively positive and negative vorticities is
also visible in the far wake. This flow structure possesses a much larger
wavelength than that of the near-wake flow structure. Despite the simi-
larities, notable differences in the eigenfunction vorticity fields of the two
cases are also observed. In this case, the magnitude of eigenfunction vor-
ticity in the far wake is much smaller and the vorticity field decays much
faster in distance from the trailing ends.

The secondary period Ts can be estimated by the argument of the
complex Floquet multiplier (h) as: Ts ¼ 2pT=h � 6:01T . Thus, the
secondary frequency is approximately 0:166f , which is much lower
than the primary (driving) frequency. Here, we also compare this

predicted frequency from the linear stability analysis with that from
the DNS result. The time history of horizontal force coefficient and its
power spectral density (PSD) are shown in Fig. 19. The secondary fre-
quency identified from the PSD plot is 0:160f , which matches well
with that obtained by the linear stability analysis. From the PSD plot,
the frequency splitting phenomenon [similar to that observed in case
ðg; ReÞ ¼ ð0:6; 150Þ] is also observed.

It should be reminded that some special attention needs to be
paid to cases in region V, where two base flow solutions with different
stability properties exist. Contrasting symmetry-breaking/preserving
behaviors are observed if the flow fields in DNS are initialized with
base flows of different type.

5. Region VI

For the case of ðg ¼ 1:6; Re ¼ 140Þ (which is located in region
VI), two base flow solutions (i.e., compact and incompact types) are
obtained, as similar to the situation we have in region V. The compact
base flow can be obtained by using the initial condition of inward start-
ing. To obtain the incompact base flow, it is necessary to begin with a
case with a lower Reynolds number (e.g., a case which is located in
region V) and the initial condition of outward starting. The Reynolds
number is then gradually increased until the targeted one is reached.

The results of Floquet stability analysis indicate that in this case
both types of base flow are unstable. For the compact base flow,
a real Floquet multiplier crossing the unit circle, l ¼ 1:7602, is
obtained. The Floquet eigenfunction looks very similar to that of case
ðg ¼ 0:8; Re ¼ 87:5Þ (see Fig. 15). For the incompact base flow, a
complex-conjugate pair of Floquet multipliers crossing the unit circle,
l ¼ 0:95146 0:3907 i, is obtained. The secondary frequency is
approximately 0:062f . The base flow, real and imaginary parts of the
Floquet eigenfunction, base flow plus perturbation and DNS flow field
at one specific phase point, are shown in Fig. 20. Similar to that
obtained with the compact base flow, anti-symmetric property of the
eigenfunction accounts for the occurrence of wake symmetry breaking.

FIG. 14. The time history of horizontal force coefficient (a) and its power spectral densities (PSD) (b) for the case of ðg ¼ 0:6; Re ¼ 200Þ. The PSD in (b) is obtained by per-
forming FFT on the time series of (a) over the interval ½50T ; 150T �.
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However, the distribution of eigenfunction vorticity differ significantly
from the one obtained with the compact base flow. Here, a three-
column (instead of one-column) flow structure with alternatively posi-
tive and negative vorticities is observed in the far wake. As shown in
Figs. 20(d) and 20(e), base flow plus perturbation is inconsistency/con-
sistent with the DNS result, where two separating vortex streets in
swaying motion are formed. From the power spectral density (PSD)
plot for the horizontal force coefficient, a secondary frequency of
0:067f can be identified [see Fig. 21(b)]. This result matches well with
that obtained by the linear stability analysis. From the PSD plot, the
frequency splitting phenomena near the primary (driving) frequency
and its higher-order harmonics are also observed.

6. Bifurcation types

Based on the Floquet multipliers obtained in cases slightly above
the neutral curve, this curve can be divided into three segments (see
Fig. 3). For segments A–B and C–D, a pair of complex-conjugate

Floquet multipliers is obtained. This indicates the occurrence of
Neimark–Sacker bifurcation when crossing the neutral curve. In seg-
ment B–C, a real Floquet multiplier is obtained. This indicates the
occurrence of saddle-node bifurcation when crossing the neutral curve.
The two intersection points between different segments are ðg
¼ 0:694; Re ¼ 120:31Þ and ðg ¼ 1:125; Re ¼ 86:72Þ, respectively. A
vertical line which connects two horizontally oriented segments is
observed at g¼ 0.7. The shape of this neutral curve shares some simi-
larities with that of the neutral curve obtained in the study on two par-
allel K�arm�an wakes behind two side-by-side cylinders.4 In both
scenarios, the neutral curve is composed of several segments, and cusps
are formed at the intersections between segment pairs.

The neutral curve determined by using linear stability analysis is
generally in accordance with that predicted by using DNS. For cases
located in different unstable regions and far from the neutral curve,
distinct symmetry-breaking behaviors observed in DNS can also be
rationalized using linear stability analysis. It is worthwhile to note that
the partitioning of parameter space into regions is solely based on

FIG. 15. Vorticity contours obtained in linear stability analysis and nonlinear simulation (DNS) for the case of ðg ¼ 0:8; Re ¼ 87:5Þ: (a) Basic flow; (b) (real) leading Floquet
eigenfunction; (c) basic flow plus perturbation; and (d) DNS result (t ¼ 75T ). In (c), the perturbation is multiplied by a factor of �25 before combining with the base flow. All pic-
tures are plotted at the same phase point.
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distinct behaviors observed in the time course of wake evolution. Such
partitioning cannot be used to categorize the bifurcation types in the
unstable regions. For identifying and tracing bifurcations in the entire
parametric space of ðg; ReÞ, a careful codimension-two bifurcation
analysis needs to be performed.4 No such attempt is made in the pre-
sent study.

C. Dynamic mode decomposition

In Sec. VB, Floquet stability analysis is used to unveil the physical
mechanisms of wake symmetry breaking observed in some selected
cases. In this section, DMD is applied to these cases for providing
more insight into this phenomenon.

The DMD analysis performed on the data of ðg ¼ 0:6; Re
¼ 150Þ (region II) and ðg ¼ 0:8; Re ¼ 87:5Þ (region IV) is detailed
first. Data selection is done by following the approach proposed in
some Refs. 53 and 66. We first delineate between distinct phases of
wake evolution by examining the time history of the magnitude of
lateral-force coefficient (see Fig. 22). A linear transient phase with
exponential growth of jCfxj and a nonlinear saturation phase can be
identified. Only the time-resolved DNS data from the first phase is
used to perform DMD analysis. This is because we are interested in
the linear dynamics of the system immediately after the onset of insta-
bility. To be more specific, time intervals of ½40T; 60T� and
½40T; 70T� are used for the two cases, respectively. The sampling
increment is set to 0:05T . As a result, the total numbers of snapshots
used in DMD analysis of the two cases are 400 and 600, respectively. It
is found that the results of DMD analysis are barely affected if the
numbers of snapshots are further increased.

Figure 23(a) shows the eigenvalues k̂ j in complex plane for the
case of ðg ¼ 0:6; Re ¼ 150Þ. Here, only the eigenvalues of the modes
whose amplitudes exceed 1% of the highest amplitude among all
DMDmodes are plotted. The energy spectrum of the DMD modes for
this case is shown in Fig. 23(b).

Mode M0 with k̂ ¼ 0 represents the time-invariant part of the
system. Since the flow is generated by periodic motion and the free-
stream velocity is zero, such mode is a spurious one due to numerical
artifacts. An energetic M0 mode identified here can be explained by
the fact that periodicity condition is not strictly satisfied by the DMD
data. This does happen if the time-resolved data are of multi-periodic
nature and existing periods are not constant multiples of each other.

The frequencies of other neutrally stable modes (i.e.,M1,M2,M3,
etc.) are the primary frequency f and its high-order harmonics. The

FIG. 16. The time history of horizontal force coefficient (a) and its power spectral densities (PSD) (b) for the case of ðg ¼ 0:8; Re ¼ 87:5Þ. The PSD in (b) is obtained by per-
forming FFT on the time series of (a) over the interval ½125T ; 250T �.

FIG. 17. Vorticity contours of basic flows for the case of ðg ¼ 1:4; Re ¼ 87:5Þ
obtained with inward starting (a) and outward starting (b).
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flow fields of these modes possess the symmetric property depicted in
(2). As one example, the flow field of the most energetic mode, M1, is
shown in Figs. 23(c) and 23(d). These neutrally stable modes can be
regarded as the “symmetry-preserving” part of the system.

The unstable modes (i.e., M0
1; M

0
2; M

0
3, etc.) are less energetic if

compared with the neutrally stable ones. The frequencies of these
modes are fs, f 6 fs; 2f 6 fs, etc., where fs is a newly emerged frequency
which is much lower than the primary one. In other words, the

FIG. 18. Vorticity contours obtained in linear stability analysis and nonlinear simulation (DNS) for the case of ðg ¼ 1:4; Re ¼ 87:5Þ: (a) (Compact) Basic flow; (b) and (c) real
and imaginary parts of the leading Floquet eigenfunction; (d) basic flow plus perturbation; and (e) DNS result (t ¼ 50T ). In (d), the perturbation is multiplied by a factor of 50
before combining with the base flow. All pictures are plotted at the same phase point.

FIG. 19. The time history of horizontal force coefficient (a) and its power spectral densities (PSD) (b) for the case of ðg ¼ 1:4; Re ¼ 87:5Þ. The PSD in (b) is obtained by per-
forming FFT on the time series of (a) over the interval ½20T ; 55T �.
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phenomenon of frequency splitting is observed near the primary fre-
quency and its high-order harmonics. For this case, the frequency fs is
found to be 0:158f , which is close to that of the leading Floquet mode
identified in Floquet analysis. A newly emerged frequency signifies the
appearance of a secondary flow structure. The flow fields of these
unstable modes possess the anti-symmetric property depicted in (3)

[see Figs. 23(e) and 23(f) for the flow field of mode M0
1]. Clearly, the

existence of unstable anti-symmetric modes can account for the occur-
rence of wake symmetry breaking.

Figure 24(a) shows the eigenvalues k̂ j on complex plane for the
case of ðg ¼ 0:8; Re ¼ 87:5Þ. Again, only the eigenvalues of the modes
whose amplitudes exceed 1% of the highest amplitude among all

FIG. 20. Vorticity contours obtained in linear stability analysis and nonlinear simulation (DNS) for the case of ðg ¼ 1:6; Re ¼ 140Þ: (a) (Incompact) Basic flow; (b) and (c) real
and imaginary parts of the Floquet eigenfunction; (d) basic flow plus perturbation; and (e) DNS result(t ¼ 160T). In (d), the perturbation is multiplied by a factor of 50 before
combining with the base flow. All pictures are for the same phase point.

FIG. 21. The time history of horizontal force coefficient (a) and its power spectral densities (PSD) (b) for the case of ðg ¼ 1:6; Re ¼ 140Þ. The PSD in (b) is obtained by per-
forming FFT on the time series of (a) over the interval ½150T ; 250T �.

Physics of Fluids ARTICLE pubs.aip.org/aip/pof

Phys. Fluids 36, 043610 (2024); doi: 10.1063/5.0196194 36, 043610-17

Published under an exclusive license by AIP Publishing

 10 April 2024 13:02:36

pubs.aip.org/aip/phf


DMDmodes are plotted. The energy spectrum of the DMDmodes for
this case is shown in Fig. 24(b).

The frequencies of neutrally stable modes (i.e., M1, M2, M3, etc.)
are also the primary frequency f and its high-order harmonics. Unlike
the previous case, here the frequencies of unstable modes (i.e.,
M0

1; M
0
2; M

0
3, etc.) are identical to those of the neutrally stable ones.

Since no newly emerged frequency is introduced, the periodicity con-
dition can be strictly satisfied by the DMD data. This explains why the
energetic spurious mode with k̂ ¼ 0 is not observed. The flow fields of
the neutrally stable and unstable modes possess the symmetric and
anti-symmetric properties, respectively. To demonstrate this, the flow
fields of mode M1 and mode M0

1 are shown in Figs. 24(c) and 24(d)
and Figs. 24(e) and 24(f). The occurrence of wake symmetry breaking
can also be explained by the existence of unstable anti-symmetric
modes.

In addition to the two cases above, three cases from regions III,
V, and VI (i.e., the cases discussed in Sec. VB) are also analyzed by
using DMD. The aforementioned strategy is also adopted in preparing
the data for DMD analysis. The findings from DMD analysis of these
three cases are similar to those reported for the case of ðg ¼ 0:6; Re
¼ 150Þ (region II). A newly emerged frequency which is much lower
than the primary one is also identified. The frequencies are 0.248,
0.166, and 0.064, for the cases from regions III, V, and VI, respectively.
These frequencies and those of the leading Floquet modes are suffi-
ciently near to each other. The newly emerged frequencies signify the
appearance of new flow structures such as paired vortices, secondary
vortex street, or dual swaying vortex streets. The modes with newly
emerged frequencies possess the anti-symmetric property and can
account for the occurrence of wake symmetry breaking.

One interesting finding that is worthy of mentioning is provided
here. For the case in region III, besides the unstable anti-symmetric
mode with a newly emerged frequency which is approximately 0:25f ,
another unstable symmetric mode with the frequency of 0:5f is also
identified. The former one accounts for the wake symmetry breaking
associated with period-doubling. The latter one accounts for the

vortex-pairing process during which wake symmetry is still preserved.
The unstable Floquet mode which possesses the symmetric property
cannot be identified in Floquet analysis. This is because that the base
flow used in Floquet analysis has already undergone the vortex-pairing
process (see Sec. VB2).

The consistency in the results of DMD and Floquet analyzes is
unsurprising since both methods aim to approximate the linear
dynamics of the system. One major difference between them lies in the
reproduction of DNS results using mode superposition. DNS results
can be reproduced accurately by a superposition of base flow and lead-
ing Floquet mode. However, tens of DMD modes are usually needed
for reproducing the DNS results with an acceptable level of accuracy.

D. Influence of symmetry breaking on propulsive
performance

The influence of wake symmetry breaking on propulsive perfor-
mance is addressed in this section. It is evident that the lateral force
which is produced as a result of symmetry breaking can pose some dif-
ficulties in maintaining straight-line swimming. However, how sym-
metry breaking affects the time-averaged thrust is still unclear. Here,
we examine the time-averaged thrust coefficients as a function of gap
ratio at three different Reynolds numbers (75; 100; 150), and the
results are shown in Fig. 25.

From this figure, it is seen that at all three Reynolds numbers, due
to the existence of ground effect the thrust coefficients are always larger
than the asymptotic values at infinitely large gap ratio. (These asymp-
totic values are equivalent to the ones obtained in two isolated pitching
foils.) Wake symmetry is preserved at all gap ratios at Re¼ 75. The
thrust coefficient decreases monotonically with increasing gap ratio
and gradually approaches the asymptotic value. This trend is in consis-
tency with the that reported in some studies on a pair of side-by-side
pitching foils and single pitching foil in ground effect.30,41 At Re¼ 100,
monotonicity of the function is not observed in the range of
0:7 � g � 1:2, and the time-averaged thrust is somehow enhanced.
Apart from this range, the thrust generation is still dominated by

FIG. 22. The time histories of lateral-force coefficient magnitudes for (a) ðg ¼ 0:6; Re ¼ 150Þ and (b) ðg ¼ 0:8; Re ¼ 87:5Þ. The time intervals used to select the data for
DMD analysis are denoted by gray strips.
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ground effect. For Re¼ 150, the trend of this function becomes more
complex. Thrust enhancement is still observed in the range of
0:7 � g � 1:2. At larger gap ratios, however, the thrust coefficient first
increases with increasing gap ratio and then saturates.

To further elaborate how thrust generation is affected by the
occurrence of symmetry breaking at Reynolds numbers 100 and 150,
we compare the thrust coefficients obtained from DNS and from the
base flow (see Fig. 26). The base flow can be regarded as a hypothetical
solution if wake symmetry breaking has never been triggered. For cases

in region V and region VI of Fig. 3, there exist two possible base flows
(as shown in Fig. 17). Here, we use the incompact base flow to com-
pute the thrust coefficient. The reason is that such type of base flow is
more relevant to the ultimate state in DNS (see the wake evolution
depicted in Secs. VB4 and VB5).

From Fig. 26, it is seen that in region IV the development of a
deflected wake as a result of symmetry breaking can significantly
enhance thrust generation. The maximal thrust increase can reach up
to 30% and 35% for Re ¼ 100 and Re ¼ 150, respectively. Wake

FIG. 23. The results of DMD analysis for the case of ðg ¼ 0:6; Re ¼ 150Þ: (a) Eigenvalues of DMD modes whose amplitudes exceed 1% of the highest amplitude among all
modes; (b) energy spectrum of DMD modes; (c) vorticity contours of mode M1 (real part); (d) vorticity contours of mode M1 (imaginary part); (e) vorticity contours of mode M0

1
(real part); and (f) vorticity contours of mode M0

1 (imaginary part).
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symmetry breaking of other types, such as that observed in region II
(which is featured by a secondary vortex street), or in region VI (which
is featured by two swaying vortex streets), has an insignificant effect on
time-averaged force generation. The result of further investigation also
indicates that symmetry breaking in region III (which is featured by
vortex-pairing) hardly affects time-averaged thrust either. Such result
is not shown here for brevity. From Fig. 26, we also notice that the
thrust coefficients for the base flow sharply increase near the transition
line between regions IV and V (or between regions IV and VI). This

can be explained by the fact that the incompact base flow produces a
higher thrust than the compact base flow.

Interestingly, the thrust enhancement due to wake symmetry
breaking found here can be used to explain the phenomenon observed
in a recent study on a self-propelled flyer in hovering flight.37 In their
work, the hovering state of the flyer was found to transit into a slowly
rising state after wake symmetry breaking was triggered. The finding
of the present study contrasts with that reported in a study on two
side-by-side pitching foils subjected to a free-stream flow.32 In their

FIG. 24. The results of DMD analysis for the case of ðg ¼ 0:8; Re ¼ 87:5Þ: (a) Eigenvalues of DMD modes whose amplitudes exceed 1% of the highest amplitude among all
modes; (b) energy spectrum of DMD modes; (c) vorticity contours of mode M1 (real part); (d) vorticity contours of mode M1 (imaginary part); (e) vorticity contours of mode M0

1
(real part); and (f) vorticity contours of mode M0

1 (imaginary part).
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work, it was found that wake symmetry breaking had almost no effect
on time-averaged thrust. It seems that the influence of symmetry
breaking on propulsive performance is strongly related to the magni-
tude of free-stream velocity. Further investigations are needed to clarify
this issue.

VI. CONCLUSIONS

Numerical simulations are performed to examine the structures
of the wakes generated by two anti-phase pitching foils at zero free-
stream velocity, in a range of gap ratio 0:6 � g � 2:0 and Reynolds
number 70 � Re � 200. The wake patterns are classified into six cate-
gories and described by six regions in the plane ðg; ReÞ. Wake

symmetry is preserved in the region which lies below a neutral-
stability curve. In the five regions above the neutral-stability curve,
distinct symmetry-breaking behaviors are observed. At a small gap
ratio and a moderate Reynolds number, the far wake is featured by
the formation of a secondary reverse K�arm�an vortex street. If the
Reynolds number increases further, the formation of secondary vor-
tex street is accompanied by vortex-pairing and vortex-merging. At
an intermediate gap ratio, vortex shedding is always synchronized
with the flapping motion the wake is deflected toward one side. At a
large gap ratio and a moderate Reynolds number, ultimately a sym-
metric wake with two separating vortex streets is obtained. At a large
gap ratio and a high Reynolds number, an asymmetric wake consist-
ing of two separating vortex streets with in-phase swaying motion is
observed.

Floquet stability analysis is performed on some selected cases in
the unstable regions. It has been revealed that the existence of unstable
anti-symmetric Floquet modes leads to symmetry breaking in the
wake. First, three cases located slight above the neutral-stability curve
are analyzed. For the two cases with small and large gap ratios, the
Floquet multipliers are complex-conjugate pairs crossing the unit cir-
cle. This suggests that the symmetry breaking is induced by a QP-type
instability and a new frequency that differs from the primary one is
introduced. For the case with intermediate gap ratios, a real Floquet
multiplier crossing the unit circle on the positive x axis is obtained.
This indicates that the symmetry breaking is induced by an S-type
instability, and vortex shedding is always synchronized with the flap-
ping motion. Second, two cases located far above the neutral-stability
curve are also studied. For the case with a low gap ratio, a real Floquet
multiplier which crosses the unit circle on the negative x axis is
obtained. This indicates that the symmetry breaking is induced by a
periodic-doubling instability. For the case with a high gap ratio, the
Floquet multiplier is a complex-conjugate pair which crosses the unit
circle and an ultralow secondary frequency is introduced in the
symmetry-breaking process. In the leading eigenfunction vorticity
field, a three-column flow structure with a very large wavelength is
observed.

FIG. 25. Time-averaged thrust coefficients as a function of gap ratio for three differ-
ent Reynolds numbers. The thrust coefficients are averaged over 250 flapping peri-
ods after the ultimate state in DNS is reached. The asymptotic thrust coefficients at
infinitely large gap ratio are indicated by horizontal dashed lines.

FIG. 26. Variation of time-averaged thrust coefficients with gap ratio: a comparison between thrust coefficients obtained from DNS and from the base flow: (a) Re¼ 100 and
(b) Re¼ 150. The vertical dotted lines represent the borders between different sub-zones shown in Fig. 3.
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DMD analysis is also performed on these selected cases for pro-
viding more insight into the symmetry-breaking phenomenon. The
unstable DMD modes possess the anti-symmetric property and
account for the occurrence of wake symmetry breaking. For the case in
which symmetry breaking is induced by QP-type instability, one
unstable DMD mode with a newly emerged frequency which is much
lower than the primary one can be identified. This frequency and that
of the leading Floquet mode are sufficiently near to each other. For the
case in which symmetry breaking is induced by S-type instability, the
frequencies of unstable DMDmodes are the primary frequency and its
high-order harmonics.

The influence of wake symmetry breaking on propulsive perfor-
mance is then investigated. It is found that symmetry breaking induced
by S-type instability, which is featured by a deflected wake, significantly
enhances time-averaged thrust. Symmetry breaking induced by QP-
type instability has an insignificant effect on time-averaged thrust.

By means of direct numerical simulation and modal analysis, the
instability mechanisms for wake symmetry instability breaking in dif-
ferent regions of parameter space have been unveiled. In our future
work, the influences of pivot-point position, flapping amplitude and
equilibrium angle on the stability of the wakes will be explored. In
additional, results from existing studies indicated that a free-stream
flow can stabilize the wakes of dual-pitching-foil systems and make
them less susceptible to symmetry-breaking instability. Thus, the insta-
bility mechanisms of the wakes at a nonzero free-stream velocity (i.e., a
finite Strouhal number) also deserve further investigation. Another
research avenue is sensitivity analysis of unstable modes and design of
control strategies to suppress wake symmetry breaking.
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APPENDIX A: CODE VALIDATION TESTS

In order to validate the in-house flow solver and the linear sta-
bility code, we consider the flow around a two-dimensional oscillat-
ing cylinder in an initially quiescent fluid. A cylinder with diameter
D undergoes a vertical oscillation of yðt�Þ ¼ A sinð2pft�Þ in a vis-
cous fluid of kinematic viscosity �, where A is the amplitude of the
oscillation, t� is the time, and f is the frequency of the oscillation.
Two dimensionless numbers are used to describe the system: KC
number KC ¼ 2pA=D and Stokes number b ¼ D2f =�. This case
has been investigated in experiments and simulations.8,11–13

The simulation is performed by using a uniform Cartesian
mesh with the grid width of D=50 and a computational domain
with the size of ½30D� 30D�. The boundary between the regions of
symmetric and asymmetric flows in the parametric space ðb; KCÞ is
determined by direct numerical simulation and the result is shown
in Fig. 27. From this figure, the boundary obtained by using the pre-
sent flow solver agrees well with the experimental and numerical
results from Refs. 8 and 11. Furthermore, two typical cases are cho-
sen to validate the code for performing Floquet stability analysis. In
Table I, the moduli of Floquet multipliers obtained by the present
code are compared with the numerical result from Ref. 13. It is
shown that the results are in good agreement with each other.

FIG. 27. Boundaries between the two-dimensional symmetrical flows and those
with broken symmetry. Squares and triangles denote the asymmetrical cases and
symmetrical cases obtained in the present study. The solid line and the dashed line
denote the results of experiment8 and simulation,11 respectively. The “freezing point”
is the dividing point of two different types of instability.11

TABLE I. Comparison of the moduli of Floquet multipliers computed using the pre-
sent code with the reference solutions.

(KC, b) Present Reference value13 Relative error (%)

(40, 4.75) 1.1149 1.1064 0.77
(100, 3.65) 1.1700 1.1473 1.98
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To validate the DMD code, we perform DMD analysis on tran-
sient cylinder wake at Re¼ 60. The flow-field data are generated by
conducting numerical simulation using the in-house flow solver. To
prepare the data for DMD analysis, a time interval with the span of
16.91 (dimensionless time unit) is selected by using the method
described in Sec. VC. (Here, the dimensionless time is defined by
the free-stream velocity and diameter of the cylinder.) With a uni-
form sampling increment of 0.455, the total number of snapshots is

38. The DMD results are shown in Fig. 28. The distribution of
eigenvalues, energy spectrum, and vorticity contours for the neu-
trally stable and unstable modes is in agreement with the results
from Ref. 53. The predicted Strouhal numbers of the unsteady
mode (i.e., mode M1) are 0.118 and 0.125, from the present test and
the reference, respectively. These two values are reasonably close to
each other. The small discrepancy can be attributed to different
DNS data used in performing DMD.

FIG. 28. Results of DMD analysis on transient cylinder-wake: (a) DMD eigenvalues in complex plane; (b) spectrum of DMD modes; (c) vorticity contours of mode M0; and (d)
vorticity contours of mode M1 (real part).

FIG. 29. Results of the mesh independence and domain independence tests: (a) The time histories of vertical force coefficient obtained by using three different mesh resolu-
tions. The solid line, dashed line, and dashed-dotted line denote the results obtained with the grid width of Dx ¼ L=100; Dx ¼ L=200, and Dx ¼ L=400, respectively. (b) The
time histories of vertical force coefficient obtained by using three different time step sizes. The solid line, dashed line, and dashed-dotted line denote the results obtained by
using the time step sizes of Dt ¼ 0:0025T ; Dt ¼ 0:001T , and Dt ¼ 0:00075T , respectively. (c) The time histories of vertical force coefficient obtained by using three different
domains. The solid line, dashed line, and dashed-dotted line denote the results obtained by using the computational domains of ½12L� 32L�; ½40L� 50L�, and ½56L� 80L�,
respectively.
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APPENDIX B: MESH, TIME STEP, AND DOMAIN
INDEPENDENCE TESTS

To ensure that the mesh resolution used in the simulation is
sufficient for obtaining accurate results, a mesh convergence test is
performed. A multi-block Cartesian mesh is used in the mesh con-
vergence test (see Fig. 2). The control parameters for the test are:
g¼ 1.0, Re¼ 87.5, L̂ ¼ 0:2; h0 ¼ 0; Ah ¼ p=12. Three different
mesh resolutions are tested, which the finest grids near the foils
being L=100; L=200, and L=400 in spacing, respectively.

Figure 29(a) shows the time histories of vertical force coeffi-
cient, which are obtained by using three different mesh resolutions.
It is clearly seen that the results are almost identical. The effect of
mesh resolution on the modulus of Floquet multiplier for this case
is demonstrated in Table II. It is seen that the discrepancy between
the results obtained with Dx ¼ L=200 and Dx ¼ L=400 is suffi-
ciently small (less than 2%).

It should be noted that Dt ¼ 0:001T is fixed in the tests above. The
effect of the time step size on the solution is also tested. Figure 29(b) shows
the time histories of vertical force coefficient obtained by using three time
step sizes (the finest grid spacing is Dx ¼ L=200 and the domain size is
½40L� 50L�). It can be seen that Dt ¼ 0:001T is sufficiently small to
obtain a time step-independent solution. Furthermore, additional test also
confirms that the modulus of Floquet multiplier is independent of the
time step size (the result is not shown here for brevity).

A domain independence test is also conducted on the same
case. The time histories of vertical force coefficient, which are
obtained by using three computational domains with different sizes,
are shown in Fig. 29(c). It turns out that three results are almost
indistinguishable. The effect of domain size on the modulus of
Floquet multiplier is also studied. As that demonstrated in Table III,
the effect of domain size on the modulus is insignificant if the
domain size is larger than ½40L� 50L�.

Based on the results of the tests above, the simulations of the pre-
sent work are conducted with the mesh resolution of Dx ¼ L=200, the
time step of Dt ¼ 0:001T , and the domain size of ½40L� 50L�.
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