IMECH-IR  > 高温气体动力学国家重点实验室
An Adaptive Multimoment Global Model on a Cubed Sphere
Chen CG(陈春刚); Xiao F(肖锋); Li XL; Chen, CG (reprint author), Chinese Acad Sci, Inst Mech, LHD, 15 Beisihuanxi Rd, Beijing 100190, Peoples R China
Source PublicationMonthly Weather Review
2011
Volume139Issue:2Pages:523-548
ISSN0027-0644
AbstractAn adaptive global shallow-water model is proposed on cubed-sphere grid using the multimoment finite volume scheme and the Berger-Oliger adaptive mesh refinement (AMR) algorithm that was originally designed for a Cartesian grid. On each patch of the cubed-sphere grid, the curvilinear coordinates are constructed in a way that the Berger-Oliger algorithm can be applied directly. Moreover, an algorithm to transfer data across neighboring patches is proposed to establish a practical integrated framework for global AMR computation on the cubed-sphere grid. The multimoment finite volume scheme is adopted as the fluid solver and is essentially beneficial to the implementation of AMR on the cubed-sphere grid. The multimoment interpolation based on both volume-integrated average (VIA) and point value (PV) provides the compact reconstruction that makes the present scheme very attractive not only in dealing with the artificial boundaries between different patches but also in the coarse fine interpolations required in the AMR computations. The single-cell-based reconstruction avoids involving more than two nesting levels during interpolations. The reconstruction profile of constrained interpolation profile-conservative semi-Lagrangian scheme with third-order polynomial function (CIP-CSL3) is adopted where the slope parameter provides a flexible and convenient switching to get the desired numerical properties, such as high-order (fourth order) accuracy, monotonicity, and positive definiteness. Numerical experiments with typical benchmark tests for both advection equation and shallow-water equations are carried out to evaluate the proposed model. The numerical errors and the corresponding CPU times of numerical experiments on uniform and adaptive meshes verify the performance of the proposed model. Compared to the uniformly refined grid, the AMR technique is able to achieve the similar numerical accuracy with less computational cost.
KeywordShallow-water Equations Finite-volume Method Barotropic Vorticity Equation Mesh Refinement Efficient Implementation Incompressible Flows Unified Formulation Weather Prediction Conservation-laws Grid Refinement
Subject AreaMeteorology & Atmospheric Sciences
DOI10.1175/2010MWR3365.1
URL查看原文
Indexed BySCI ; EI
Language英语
WOS IDWOS:000288729300013
WOS KeywordSHALLOW-WATER EQUATIONS ; FINITE-VOLUME METHOD ; BAROTROPIC VORTICITY EQUATION ; MESH REFINEMENT ; EFFICIENT IMPLEMENTATION ; INCOMPRESSIBLE FLOWS ; UNIFIED FORMULATION ; WEATHER PREDICTION ; CONSERVATION-LAWS ; GRID REFINEMENT
WOS Research AreaMeteorology & Atmospheric Sciences
WOS SubjectMeteorology & Atmospheric Sciences
Funding OrganizationThis work is supported by National Natural Science Foundation of China and Chinese Academy of Sciences under Projects 10852001, 10902116, 40805045, and KJCX2-YW-L04. We thank anonymous reviewers for their constructive suggestions.
Classification二类/Q2
Citation statistics
Cited Times:15[WOS]   [WOS Record]     [Related Records in WOS]
Document Type期刊论文
Identifierhttp://dspace.imech.ac.cn/handle/311007/45179
Collection高温气体动力学国家重点实验室
Corresponding AuthorChen, CG (reprint author), Chinese Acad Sci, Inst Mech, LHD, 15 Beisihuanxi Rd, Beijing 100190, Peoples R China
Recommended Citation
GB/T 7714
Chen CG,Xiao F,Li XL,et al. An Adaptive Multimoment Global Model on a Cubed Sphere[J]. Monthly Weather Review,2011,139(2):523-548.
APA 陈春刚,肖锋,Li XL,&Chen, CG .(2011).An Adaptive Multimoment Global Model on a Cubed Sphere.Monthly Weather Review,139(2),523-548.
MLA 陈春刚,et al."An Adaptive Multimoment Global Model on a Cubed Sphere".Monthly Weather Review 139.2(2011):523-548.
Files in This Item: Download All
File Name/Size DocType Version Access License
SCI-J2011104.pdf(9435KB) 开放获取--View Download
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[陈春刚]'s Articles
[肖锋]'s Articles
[Li XL]'s Articles
Baidu academic
Similar articles in Baidu academic
[陈春刚]'s Articles
[肖锋]'s Articles
[Li XL]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[陈春刚]'s Articles
[肖锋]'s Articles
[Li XL]'s Articles
Terms of Use
No data!
Social Bookmark/Share
File name: SCI-J2011104.pdf
Format: Adobe PDF
This file does not support browsing at this time
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.