IMECH-IR  > 流固耦合系统力学重点实验室
基于随机减量技术的模态参数识别方法探讨
Alternative TitleDiscussion on modal parameter identification method based on random decrement technique
聂雪媛; 丁桦
Source Publication机械设计
2012-08-20
Volume29Issue:8Pages:1-5
ISSN1001-2354
Abstract大型基础工程结构的特征参数识别通常是通过对环境载荷激励的结构响应进行分析来实现,随机减量(Random Decrement,RD)技术是环境激励下的模态参数识别方法中应用较广的方法。在实际应用中受环境、测量等条件的限制,信号常为含有某些优势频率的非平稳信号,常常导致随机减量技术在识别结构参数尤其是系统阻尼时带来较大误差。为提高随机减量技术在环境激励作用下识别结构参数的准确性,文中从分析随机减量信号频谱中的频率分布特性入手,结合随机减量函数产生的触发条件,给出了一种利用信号频谱的统计特征进行模态参数识别的方法。数值仿真结果表明该函数能准确识别在含有优势频率环境载荷作用下的结构参数。
Other AbstractCharacteristic parameters identification of major engineering structures is often performed by analyzing the responses of structure to ambient load excitation,the random decrement(RD) technique is more widely applied method of modal parameters identification under ambient excitation.As the restriction by conditions as environment,measurement and etc.in actual application,the signal usually is non-stable signal containing some dominant frequencies,this causes the random decrement technique to bring much bigg...
Keyword环境激励 随机减量技术 特征参数识别 大型工程结构
Subject Area计算固体力学
URL查看原文
Indexed ByCSCD
Language中文
CSCD IDCSCD:4614261
Department流固耦合系统力学重点实验室
Citation statistics
Document Type期刊论文
Identifierhttp://dspace.imech.ac.cn/handle/311007/46490
Collection流固耦合系统力学重点实验室
Corresponding Author聂雪媛
Recommended Citation
GB/T 7714
聂雪媛,丁桦. 基于随机减量技术的模态参数识别方法探讨[J]. 机械设计,2012,29(8):1-5.
APA 聂雪媛,&丁桦.(2012).基于随机减量技术的模态参数识别方法探讨.机械设计,29(8),1-5.
MLA 聂雪媛,et al."基于随机减量技术的模态参数识别方法探讨".机械设计 29.8(2012):1-5.
Files in This Item: Download All
File Name/Size DocType Version Access License
C2012J-080.pdf(367KB) 开放获取--View Download
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[聂雪媛]'s Articles
[丁桦]'s Articles
Baidu academic
Similar articles in Baidu academic
[聂雪媛]'s Articles
[丁桦]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[聂雪媛]'s Articles
[丁桦]'s Articles
Terms of Use
No data!
Social Bookmark/Share
File name: C2012J-080.pdf
Format: Adobe PDF
This file does not support browsing at this time
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.