IMECH-IR  > 流固耦合系统力学重点实验室
基于混合遗传算法的高速列车截面变化率优化设计
Alternative TitleOptimal Cross-sectional Area Distribution of a High-speed Train Nose Based on a Hybrid Genetic Algorithm
姚拴宝; 郭迪龙; 杨国伟
Source Publication科学技术与工程
2013-10-08
Volume13Issue:28Pages:123-129
ISSN1671-1815
Abstract基于遗传算法和单纯形法构造出了一种混合优化算法,对不同编码方式的算法进行了对比分析。发现混合算法的寻优能力明显优于遗传算法的寻优能力;实数编码的混合算法能够更好的保持种群多样性,在存在多个局部最优解的情况下,比二进制编码的混合算法的寻优能力强。利用构造的基于实数编码的混合算法,结合Hicks-Henne型函数参数化方法和Kriging代理模型,对高速列车的截面变化率进行了减小气动阻力的优化设计,得到了在设计空间内的最优截面变化率;优化后,三辆编组列车的气动阻力减小9.41%,其中,压差阻力减小38.02%,摩擦阻力基本不变,头车气动阻力减小12.55%,尾车气动减小13.98%。
Other AbstractA hybrid optimization algorithm(HOA) is proposed based on genetic algorithm(GA) and simplex method. The searching abilities of optimization algorithms with different coding methods are compared. The results show that the searching abilities of HOA is remarkable performance against that of GA; The real-coded HOA can maintain the population diversity and is competitive with the binary-coded HOA when solving problems of many local optimal solution. In order to reducing the aerodynamic drag of high-speed trains, the cross-sectional area distribution of a high-speed train nose is optimized with the real-coded HOA combined with Hicks-Henne function parametric method and Kriging surrogate model, and the best cross-sectional area distribution in the design space is found. The aerodynamic drag of the original shape is reduced by 9.41%, the viscous drag is reduced by 38.02%, the inviscid drag change little, the aerodynamic drag of the nose and the trailing car is reduced by 12.55% and 13.98%, respectively.
Keyword混合算法 截面变化率 遗传算法 Kriging代理模型 高速列车
Subject Area工业空气动力学
URL查看原文
Language中文
Funding Organization国家科技支撑计划(2009BAG12A03);国家重点基础研究发展计划(“973”)(2011CB71100)资助.
Department流固耦合系统力学重点实验室
Document Type期刊论文
Identifierhttp://dspace.imech.ac.cn/handle/311007/47597
Collection流固耦合系统力学重点实验室
Corresponding Author姚拴宝
Recommended Citation
GB/T 7714
姚拴宝,郭迪龙,杨国伟. 基于混合遗传算法的高速列车截面变化率优化设计[J]. 科学技术与工程,2013,13(28):123-129.
APA 姚拴宝,郭迪龙,&杨国伟.(2013).基于混合遗传算法的高速列车截面变化率优化设计.科学技术与工程,13(28),123-129.
MLA 姚拴宝,et al."基于混合遗传算法的高速列车截面变化率优化设计".科学技术与工程 13.28(2013):123-129.
Files in This Item: Download All
File Name/Size DocType Version Access License
IMCAS-J2013-333.pdf(2810KB) 开放获取--View Download
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[姚拴宝]'s Articles
[郭迪龙]'s Articles
[杨国伟]'s Articles
Baidu academic
Similar articles in Baidu academic
[姚拴宝]'s Articles
[郭迪龙]'s Articles
[杨国伟]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[姚拴宝]'s Articles
[郭迪龙]'s Articles
[杨国伟]'s Articles
Terms of Use
No data!
Social Bookmark/Share
File name: IMCAS-J2013-333.pdf
Format: Adobe PDF
This file does not support browsing at this time
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.