IMECH-IR  > 高温气体动力学国家重点实验室
Evolution of cellular structures on oblique detonation surfaces
Teng HH(滕宏辉); Ng HD; Li K(李康); Luo CT(罗长童); Jiang ZL(姜宗林); Teng, HH (reprint author), Chinese Acad Sci, Inst Mech, State Key Lab High Temp Gas Dynam, Beijing 100190, Peoples R China.
2015-02
发表期刊COMBUSTION AND FLAME
卷号162期号:2页码:470-477
ISSN0010-2180
摘要In this study, numerical simulations using the inviscid Euler equations with one-step Arrhenius chemistry model are carried out to investigate the effects of activation energy and wedge angle on the stability of oblique detonation surfaces. Two kinds of cellular structure are studied, one is featured by a single group of transverse waves traveling upstream, referred to as LRTW (left-running transverse waves), and the other is featured by additional RRTW (right-running transverse waves). The present computational simulation reveals the formation of un-reacted gas pockets behind the cellular oblique detonation. Numerical smoked foil records are produced to show the emergence of the two types of transverse waves and the evolution of the unstable cellular structure of the oblique detonation. The transverse wave dynamics, including the colliding, emerging and splitting types, are found to be similar to the normal detonation propagation, demonstrating the instability mechanism is originated from the inherent instability of cellular detonations. Statistical analysis on the cellular structure is carried out to observe quantitatively the influences of activation energy and wedge angle. Results from the parametric study show that high activation energy and low wedge angle are favorable to the LRTW formation. However, the condition for the RRTW formation is more complex. In the case of low activation energy, small wedge angle is beneficial to the RRTW formation, as to the LRTW formation. In contrary, for high activation energy, there appears one moderate wedge angle favoring the RRTW formation and giving the shortest length between the onset of both LR and RR transverse waves. For quantitative comparison, we analyze the variation of two distances with the wedge angle, one is between the detonation initiation and LRTW formation points, and the other between LRTW and RRTW formation points. Results show the latter is relatively less pronounced than the former, indicating the RRTW formation depends mainly on the activation energy and the generation of LRTW. (C) 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
关键词Detonation Instability Cellular Structure Transverse Wave Numerical Simulations
学科领域Thermodynamics ; Energy & Fuels ; Engineering
DOI10.1016/j.combustflame.2014.07.021
URL查看原文
收录类别SCI ; EI
语种英语
WOS记录号WOS:000348411900015
项目资助者The research is supported by The National Natural Science Foundation of China NSFC Nos. 11372333 and 51376165; and the Natural Sciences and Engineering Research Council of Canada (NSERC).
课题组名称LHD激波与爆轰物理
论文分区一类
引用统计
被引频次:20[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://dspace.imech.ac.cn/handle/311007/49588
专题高温气体动力学国家重点实验室
通讯作者Teng, HH (reprint author), Chinese Acad Sci, Inst Mech, State Key Lab High Temp Gas Dynam, Beijing 100190, Peoples R China.
推荐引用方式
GB/T 7714
Teng HH,Ng HD,Li K,et al. Evolution of cellular structures on oblique detonation surfaces[J]. COMBUSTION AND FLAME,2015,162(2):470-477.
APA Teng HH,Ng HD,Li K,Luo CT,Jiang ZL,&Teng, HH .(2015).Evolution of cellular structures on oblique detonation surfaces.COMBUSTION AND FLAME,162(2),470-477.
MLA Teng HH,et al."Evolution of cellular structures on oblique detonation surfaces".COMBUSTION AND FLAME 162.2(2015):470-477.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
IMCAS-J2015-015.pdf(1555KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Teng HH(滕宏辉)]的文章
[Ng HD]的文章
[Li K(李康)]的文章
百度学术
百度学术中相似的文章
[Teng HH(滕宏辉)]的文章
[Ng HD]的文章
[Li K(李康)]的文章
必应学术
必应学术中相似的文章
[Teng HH(滕宏辉)]的文章
[Ng HD]的文章
[Li K(李康)]的文章
相关权益政策
暂无数据
收藏/分享
文件名: IMCAS-J2015-015.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。