IMECH-IR  > 非线性力学国家重点实验室
石料力学性能分析在旧石器考古学研究中的应用
Alternative TitleThe application of lithic raw material mechanical analysis in Paleolithic archaeology
周振宇; 郇勇; 刘薇; 董杰
Source Publication人类学学报
2016
Volume35Issue:3Pages:407-417
ISSN1000-3193
Abstract石料是石器制作过程中的重要因素,石料本身的力学性能不仅与古人类的原料利用方式密切相关,还会影响到石器打制方法、器物组合、甚至石器工业面貌。长期以来,旧石器考古学界对于石料力学性能的判断多基于简单的岩石矿物硬度和结构特征,实际上岩石的力学性能涵盖的内容远远超过其硬度和结构的范畴。本文使用力学研究的方法,通过对石料的单轴抗压强度测试,了解不同原料的力学性能,并将其与遗址出土石制品进行比较研究,尝试探讨岩石本身力学性能与石制品面貌之间的关系。
Other AbstractRaw material is commonly considered as a very important element in prehistoric stone tools production. Different raw material has been proved to cause variability in lithic assemblages by influencing the knapping technique and tool types. The knapping properties of raw material have a strong correlation with rock mechanical properties which are determined by factors such as mineral composition, crystal size, density, texture, and degree of weathering, moisture content, etc. For a long time, hardness is taken as only criteria to evaluate the raw material mechanical properties based on a semi-quantitative lithic grade scale. In most cases, "easy", "good", are used to describe the high quality raw material by knappers' subjective sensation. Lithology analysis and mechanical tests have been proved as quantitative approach for mechanical properties of stone raw material. In the past study, four mechanical properties, elastic response, compressive strength, tensile strength, and fracture toughness were selected for testing. Fracture toughness was supposed as the most objective measure of the knapping quality of raw materials. In this paper, the results of lithology mechanical tests have shown that compressive strength is also an objective measure of the raw material quality. Besides that, rock damage processes in compression tests include the initiation, development and nucleation of cracks that can be refl ected on strain vs. stress curves. To investigate the mechanical properties of raw material, compression tests were performed using a MTS 810 material testing machine. Specimen cubes were cut out of pebbles from Paleolithic site for the tests. Force is measured by the load cell, and the deformation of the specimen is measured by a COD displacement sensor fi xed between two compression plates. This deformation vs. force relationship was then transformed to a strain vs. stress curve. Six kinds of raw material, dolomite, chert, obsidian, quartz, quartzite, and granite, were involved in the compression test. In Shuidonggou site, dolomite shows higher ductility and brittleness than quartz and quartzite. This result implies that dolomite appears better fl aking properties than quartz and quartzite in Shuidonggou. Archaeology remains The quartz from Beitaishanmiao site, Hubei and Xujiacheng site, Gansu present the similar lithology mechanical properties, which might be taken as one explanation for that both two sites shows similar raw material utilization and lithic assemblage. In the chert (Daerwo site, Guanyindong site, Guizhou) and obsidian (Japan) specimens we examined, since of the microfi ssure, both the dispersion of maximum stress and maximum strain is bigger than dolomite, quartz, sand quartzite, and granite. This suggests that, in some case, the macro-crystal rock maybe appears better fl aking properties than microcrystal rock, such as chert, fl int, and obsidian. In this study, mechanical properties analysis has been proved quite objective method for raw material utilization analysis. We suggest that knapping experiment should be correlated with mechanical tests. Moreover, more mechanical tests with different raw materials from different sites are necessary for the comparative examination and also significant for building a raw material mechanical properties database.
KeywordPaleolithic Rock Mechanics Mechanic Properties Raw Material Utilization
Indexed ByCSCD
Language中文
WOS KeywordPaleolithic ; Rock Mechanics ; Mechanic properties ; Raw material utilization
Funding Organization国家自然科学基金青年基金项目 ; 中国科学院战略性先导科技专项 ; 国家社会科学基金青年项目
CSCD IDCSCD:5773628
DepartmentLNM实验平台
RankingFalse
Citation statistics
Cited Times:1[CSCD]   [CSCD Record]
Document Type期刊论文
Identifierhttp://dspace.imech.ac.cn/handle/311007/59795
Collection非线性力学国家重点实验室
Recommended Citation
GB/T 7714
周振宇,郇勇,刘薇,等. 石料力学性能分析在旧石器考古学研究中的应用[J]. 人类学学报,2016,35(3):407-417.
APA 周振宇,郇勇,刘薇,&董杰.(2016).石料力学性能分析在旧石器考古学研究中的应用.人类学学报,35(3),407-417.
MLA 周振宇,et al."石料力学性能分析在旧石器考古学研究中的应用".人类学学报 35.3(2016):407-417.
Files in This Item: Download All
File Name/Size DocType Version Access License
a2016-226.pdf(553KB)期刊论文作者接受稿开放获取CC BY-NC-SAView Download
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[周振宇]'s Articles
[郇勇]'s Articles
[刘薇]'s Articles
Baidu academic
Similar articles in Baidu academic
[周振宇]'s Articles
[郇勇]'s Articles
[刘薇]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[周振宇]'s Articles
[郇勇]'s Articles
[刘薇]'s Articles
Terms of Use
No data!
Social Bookmark/Share
File name: a2016-226.pdf
Format: Adobe PDF
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.