IMECH-IR  > 非线性力学国家重点实验室
On strain hardening mechanism in gradient nanostructures
Li JJ; Weng GJ; Chen SH(陈少华); Wu XL(武晓雷); Li, JJ (reprint author), Northwestern Polytech Univ, Sch Mech Civil Engn & Architecture, Dept Engn Mech, Xian 710129, Shaanxi, Peoples R China.
发表期刊INTERNATIONAL JOURNAL OF PLASTICITY
2017
卷号88页码:89-107
ISSN0749-6419
摘要Experiments have shown that a gradient design, in which grain size spans over four orders of magnitude, can make strong nanomaterials ductile. The enhanced ductility is attributed to the considerable strain hardening capability obtained in the gradient metals. A non-uniform deformation on the lateral sample surface is also observed. This might inject geometrically necessary dislocations (GNDs) into the sample. However, no direct evidence has been provided. Therefore the issues remain: why can the gradient structure generate high strain hardening, and how does it reconcile the strength-ductility synergy of gradient nanostructures? Here for the first time we quantitatively investigate the strain hardening of a gradient interstitial-free steel by developing a dislocation density-based continuum plasticity model, in which the interaction of the component layers in the gradient structure is represented by incorporating GNDs and back stress. It is demonstrated that both the surface non-uniform deformation and the strain-hardening rate up-turn can be quantitatively well predicted. The results also show that the strain hardening rate of the gradient sample can reach as high as that of the coarse-grained counterpart. A strength-ductility map is then plotted, which clearly show that the gradient samples perform much more superior to their homogeneous counterparts in strength-ductility synergy. The predicted map has been verified by a series of experimental data. A detailed analysis on GNDs distribution and back stress evolution at the end further substantiates our view that the good strain hardening capability results from the generation of abundant GNDs by the surface non-uniform deformation into the nano-grained layers of the gradient sample. (C) 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
关键词Ductility Dislocations Constitutive Behavior Inhomogeneous Material Analytic Functions
DOI10.1016/j.ijplas.2016.10.003
URL查看原文
收录类别SCI ; EI
语种英语
WOS记录号WOS:000389105300005
关键词[WOS]Ductility ; Dislocations ; Constitutive behavior ; Inhomogeneous material ; Analytic functions
WOS研究方向Engineering ; Materials Science ; Mechanics
WOS类目Engineering, Mechanical ; Materials Science, Multidisciplinary ; Mechanics
项目资助者Alexander von Humboldt Foundation ; National Natural Science Foundation of China [11402203] ; Fundamental Research Funds for the Central Universities [3102015BJ(II)JGZ025] ; NSF Mechanics of Materials and Structures Program [CMMI-1162431] ; NSFC [11372317, 11532013, 11572328] ; 973 Nano-project [2012CB937500] ; 973 Program [2012CB932203]
课题组名称LNM材料介观力学性能的表征
论文分区一类
力学所作者排名4
引用统计
被引频次:194[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://dspace.imech.ac.cn/handle/311007/59943
专题非线性力学国家重点实验室
通讯作者Li, JJ (reprint author), Northwestern Polytech Univ, Sch Mech Civil Engn & Architecture, Dept Engn Mech, Xian 710129, Shaanxi, Peoples R China.
推荐引用方式
GB/T 7714
Li JJ,Weng GJ,Chen SH,et al. On strain hardening mechanism in gradient nanostructures[J]. INTERNATIONAL JOURNAL OF PLASTICITY,2017,88:89-107.
APA Li JJ,Weng GJ,陈少华,武晓雷,&Li, JJ .(2017).On strain hardening mechanism in gradient nanostructures.INTERNATIONAL JOURNAL OF PLASTICITY,88,89-107.
MLA Li JJ,et al."On strain hardening mechanism in gradient nanostructures".INTERNATIONAL JOURNAL OF PLASTICITY 88(2017):89-107.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
IMCAS-J2016-318.pdf(2968KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
Lanfanshu学术
Lanfanshu学术中相似的文章
[Li JJ]的文章
[Weng GJ]的文章
[陈少华]的文章
百度学术
百度学术中相似的文章
[Li JJ]的文章
[Weng GJ]的文章
[陈少华]的文章
必应学术
必应学术中相似的文章
[Li JJ]的文章
[Weng GJ]的文章
[陈少华]的文章
相关权益政策
暂无数据
收藏/分享
文件名: IMCAS-J2016-318.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。