IMECH-IR  > 非线性力学国家重点实验室
Dual Phase Synergy Enabled Large Elastic Strains of Nanoinclusions in a Dislocation Slip Matrix Composite
Zhang JS; Hao SJ; Jiang DQ; Xun Y(郇勇); Cui LS; Liu YN; Ren Y; Yang H
发表期刊NANO LETTERS
2018-05-01
卷号18期号:5页码:2976-2983
ISSN1530-6984
摘要Freestanding nanomaterials (such as nanowires, nanoribbons, and nanotubes) are known to exhibit ultralarge elastic strains and ultrahigh strengths. However, harnessing their superior intrinsic mechanical properties in bulk composites has proven to be difficult. A recent breakthrough has overcome this difficulty by using a martensitic phase transforming matrix in which ultralarge elastic strains approaching the theoretical limit is achieved in Nb nanowires embedded in the matrix. This discovery, breaking a long-standing challenge, still limits our ability of harnessing the exceptional properties of nanomaterials and developing ultrahigh strength bulk materials to a narrow selection of phase transforming alloy matrices. In this study, we investigated the possibility to harness the intrinsic mechanical properties of nanoinclusions in conventional dislocation slip matrix based on a principle of synergy between the inclusion and the matrix. The small spacing between the densely populated hard and dislocation-impenetrable nanoinclusions departmentalize the plastic matrix into small domains to effectively impede dislocation motion within the matrix, inducing significant strengthening and large local elastic strains of the matrix, which in turn induced large elastic strains in the nanoinclusions. This dual phase synergy is verified in a Ti3Sn inclusions/B2-NiTi(Fe) plastic matrix model materials system. The maximum elastic strain of Ti3Sn inclusion obtained in the dislocation slip matrix is comparable to that achieved in a phase transforming matrix. This finding opens new opportunities for the development of high-strength nanocomposites.
关键词Elastic Strain Composite Mechanical Behavior High-energy X-ray Diffiraction Dislocation Slip
DOI10.1021/acs.nanolett.8b00427
收录类别SCI ; EI
语种英语
WOS记录号WOS:000432093200034
关键词[WOS]X-RAY-DIFFRACTION ; IN-SITU SYNCHROTRON ; HIGH-STRENGTH ; NB NANOWIRES ; NITI MATRIX ; DEFORMATION ; ALLOYS ; STEELS ; NANOCOMPOSITES ; ULTRASTRONG
WOS研究方向Chemistry ; Science & Technology - Other Topics ; Materials Science ; Physics
WOS类目Chemistry, Multidisciplinary ; Chemistry, Physical ; Nanoscience & Nanotechnology ; Materials Science, Multidisciplinary ; Physics, Applied ; Physics, Condensed Matter
项目资助者National Natural Science Foundation of China (NSFC)(51601069 ; Australian Research Council(DP160105066 ; US Department of Energy, Office of Science, and Office of Basic Energy Science, Office of Basic Energy Sciences(DE-AC02-06CH11357) ; 51731010 ; DP180101955) ; 11474362 ; 51471187)
论文分区一类
力学所作者排名4
引用统计
文献类型期刊论文
条目标识符http://dspace.imech.ac.cn/handle/311007/77485
专题非线性力学国家重点实验室
推荐引用方式
GB/T 7714
Zhang JS,Hao SJ,Jiang DQ,et al. Dual Phase Synergy Enabled Large Elastic Strains of Nanoinclusions in a Dislocation Slip Matrix Composite[J]. NANO LETTERS,2018,18(5):2976-2983.
APA Zhang JS.,Hao SJ.,Jiang DQ.,郇勇.,Cui LS.,...&Yang H.(2018).Dual Phase Synergy Enabled Large Elastic Strains of Nanoinclusions in a Dislocation Slip Matrix Composite.NANO LETTERS,18(5),2976-2983.
MLA Zhang JS,et al."Dual Phase Synergy Enabled Large Elastic Strains of Nanoinclusions in a Dislocation Slip Matrix Composite".NANO LETTERS 18.5(2018):2976-2983.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhang JS]的文章
[Hao SJ]的文章
[Jiang DQ]的文章
百度学术
百度学术中相似的文章
[Zhang JS]的文章
[Hao SJ]的文章
[Jiang DQ]的文章
必应学术
必应学术中相似的文章
[Zhang JS]的文章
[Hao SJ]的文章
[Jiang DQ]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。