IMECH-IR  > 流固耦合系统力学重点实验室
Impact resistance of single-layer metallic glass nanofilms to high-velocity micro-particle penetration
Dong JL(董金磊)1; Song X(宋鑫)2,4; Wang, Z. J.3; Xiao KL(肖凯璐)1,4; Liu, Y. H.3; Wilde, G.5; Wu XQ(吴先前)1; 蒋敏强2,4)
通讯作者Wu, X. Q.(wuxianqian@imech.ac.cn) ; Jiang, M. Q.(mqjiang@imech.ac.cn)
发表期刊EXTREME MECHANICS LETTERS
2021-04-01
卷号44页码:6
ISSN2352-4316
摘要Macro- and microscale metallic glasses exhibit excellent protective capability under hypervelocity projectile impact conditions. However, it is formidably challenging to evaluate the ballistic performance of metallic glasses with characteristic sizes down to the nanoscale. Here, we adopt the laser-induced micro-particle impact technique to penetrate 60-nm-thick Ni60Ta40 metallic glass nanofilms with projectile velocities in the range of 186-540 m/s. Based on the ballistic analysis, the superior impact resistance of the metallic glass nanofilms is quantitatively characterized in terms of the specific penetration energy. The post-mortem observations of the penetration features reveal that shear-banding, cracking, and bending of cracking-induced petals are the main energy dissipation modes beyond the localized perforated hole, which is strongly dependent on impact velocities. This work for the first time achieves high-strain-rate loading on nanoscale metallic glasses, and extends their engineering applications as promising armor materials for high-velocity impact protection. (C) 2021 Elsevier Ltd. All rights reserved.
关键词Metallic glass nanofilm High-velocity impact Penetration Impact resistance
DOI10.1016/j.eml.2021.101258
收录类别SCI ; EI
语种英语
WOS记录号WOS:000642464700005
关键词[WOS]MECHANICAL-BEHAVIOR ; NOSED PROJECTILES ; ENERGY-ABSORPTION ; TENSILE DUCTILITY ; PLASTIC-FLOW ; PLATES ; DEFORMATION ; PERFORMANCE ; GRAPHENE ; ORIGIN
WOS研究方向Engineering ; Materials Science ; Mechanics
WOS类目Engineering, Mechanical ; Materials Science, Multidisciplinary ; Mechanics
资助项目National Natural Science Foundation of China (NSFC) Basic Science Center for Multiscale Problems in Nonlinear Mechanics''[11988102] ; NSFC, China[11972345] ; NSFC, China[11672315] ; NSFC, China[11772347] ; Science Challenge Project, China[TZ2018001] ; Strategic Priority Research Program of the Chinese Academy of Sciences[XDB22040302] ; Strategic Priority Research Program of the Chinese Academy of Sciences[XDB22040303]
项目资助者National Natural Science Foundation of China (NSFC) Basic Science Center for Multiscale Problems in Nonlinear Mechanics'' ; NSFC, China ; Science Challenge Project, China ; Strategic Priority Research Program of the Chinese Academy of Sciences
论文分区一类
力学所作者排名1
RpAuthorWu, X. Q. ; Jiang, M. Q.
引用统计
被引频次:9[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://dspace.imech.ac.cn/handle/311007/86513
专题流固耦合系统力学重点实验室
非线性力学国家重点实验室
作者单位1.Chinese Acad Sci, Inst Mech, Key Lab Mech Fluid Solid Coupling Syst, Beijing 100190, Peoples R China;
2.Chinese Acad Sci, Inst Mech, State Key Lab Nonlinear Mech, Beijing 100190, Peoples R China;
3.Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China;
4.Univ Chinese Acad Sci, Sch Engn Sci, Beijing 100049, Peoples R China;
5.Westfalische Wilhelms Univ Munster, Inst Mat Phys, D-48149 Munster, Germany
推荐引用方式
GB/T 7714
Dong JL,Song X,Wang, Z. J.,et al. Impact resistance of single-layer metallic glass nanofilms to high-velocity micro-particle penetration[J]. EXTREME MECHANICS LETTERS,2021,44:6.
APA 董金磊.,宋鑫.,Wang, Z. J..,肖凯璐.,Liu, Y. H..,...&蒋敏强2,4).(2021).Impact resistance of single-layer metallic glass nanofilms to high-velocity micro-particle penetration.EXTREME MECHANICS LETTERS,44,6.
MLA 董金磊,et al."Impact resistance of single-layer metallic glass nanofilms to high-velocity micro-particle penetration".EXTREME MECHANICS LETTERS 44(2021):6.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Jp2021193.pdf(2174KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
Lanfanshu学术
Lanfanshu学术中相似的文章
[董金磊]的文章
[宋鑫]的文章
[Wang, Z. J.]的文章
百度学术
百度学术中相似的文章
[董金磊]的文章
[宋鑫]的文章
[Wang, Z. J.]的文章
必应学术
必应学术中相似的文章
[董金磊]的文章
[宋鑫]的文章
[Wang, Z. J.]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Jp2021193.pdf
格式: Adobe PDF
此文件暂不支持浏览
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。