IMECH-IR  > 非线性力学国家重点实验室
Dynamic responses in shocked Cu-Zr nanoglasses with gradient microstructure
Guan YL1; Song WD1; Wang YJ(王云江)2; Liu SS1; Yu YJ1
通讯作者Song, Weidong(swdgh@bit.edu.cn)
发表期刊INTERNATIONAL JOURNAL OF PLASTICITY
2022-02-01
卷号149页码:23
ISSN0749-6419
摘要Shock is one of the physical processes that materials are most likely to suffer during applications, therefore the elusive shock properties of nanoglasses are unacceptable. Additionally, establishing gradient microstructure is a promising approach to optimize mechanics properties further. Here, shock characteristics of Cu64Zr36 nanoglasses with gradient microstructures are systematically investigated by molecular dynamics simulations in the particle velocity range of 0.5 to 5 km/s. Two types of gradient nanoglasses (GNGs) along the shock direction are prepared and analyzed, i. e., a negative gradient structure (S1) in contrast with a positive gradient structure (S2). The results show that the number of mechanically stable < 0,0,12,0 > and < 0,1,10,2 > atomic Voronoi polyhedra, which are typical building blocks of the amorphous structure in terms of Voronoi tessellation method, in grain interfaces is significantly less than that in grain interiors. As a result, the local free volume gradually changes along the shock direction by the designed gradient structure, which causes a significant impact on the shock wave profiles of shear strain, stress, configurational entropy, and temperature in the GNGs. However, due to a similar chemically disordered feature in grain interiors and interfaces, the shock wave speeds of nanoglasses are not sensitive to grain sizes under the same shock strength, contrary to the usual shock wave speed mechanism in conventional polycrystalline. Thus, unlike traditional polycrystalline with grain size gradient, the indirect free-surface method of estimating spall strength is still applicable to the GNGs. Finally, the positive gradient structure results in lower temperature and free volume in the spall region, which causes the spall strengths of the S2 sample higher than those of the S1 sample.
关键词Nanoglasses Gradient microstructure Shock response Spallation Molecular dynamics
DOI10.1016/j.ijplas.2021.103154
收录类别SCI ; EI
语种英语
WOS记录号WOS:000788358900004
关键词[WOS]BULK METALLIC GLASSES ; ATOMIC-STRUCTURE ; SHEAR BANDS ; MECHANICAL-PROPERTIES ; DEFORMATION ; TEMPERATURE ; DEPENDENCE ; INTERFACES ; STABILITY ; FLOW
WOS研究方向Engineering ; Materials Science ; Mechanics
WOS类目Engineering, Mechanical ; Materials Science, Multidisciplinary ; Mechanics
资助项目National Natural Science Foundation of China[12172056] ; National Natural Science Foundation of China[11972092] ; National Natural Science Foundation of China[12002049] ; National Natural Science Foundation of China[11802028] ; National Natural Science Foundation of China[11732003]
项目资助者National Natural Science Foundation of China
论文分区一类
力学所作者排名3
RpAuthorSong, Weidong
引用统计
被引频次:12[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://dspace.imech.ac.cn/handle/311007/89100
专题非线性力学国家重点实验室
作者单位1.Beijing Inst Technol, State Key Lab Explos Sci & Technol, Beijing 100081, Peoples R China;
2.Chinese Acad Sci, Inst Mech, State Key Lab Nonlinear Mech, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Guan YL,Song WD,Wang YJ,et al. Dynamic responses in shocked Cu-Zr nanoglasses with gradient microstructure[J]. INTERNATIONAL JOURNAL OF PLASTICITY,2022,149:23.
APA Guan YL,Song WD,王云江,Liu SS,&Yu YJ.(2022).Dynamic responses in shocked Cu-Zr nanoglasses with gradient microstructure.INTERNATIONAL JOURNAL OF PLASTICITY,149,23.
MLA Guan YL,et al."Dynamic responses in shocked Cu-Zr nanoglasses with gradient microstructure".INTERNATIONAL JOURNAL OF PLASTICITY 149(2022):23.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Jp2022FA532.pdf(17727KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
Lanfanshu学术
Lanfanshu学术中相似的文章
[Guan YL]的文章
[Song WD]的文章
[王云江]的文章
百度学术
百度学术中相似的文章
[Guan YL]的文章
[Song WD]的文章
[王云江]的文章
必应学术
必应学术中相似的文章
[Guan YL]的文章
[Song WD]的文章
[王云江]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Jp2022FA532.pdf
格式: Adobe PDF
此文件暂不支持浏览
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。