IMECH-IR

浏览/检索结果: 共12条,第1-10条 帮助

限定条件                
已选(0)清除 条数/页:   排序方式:
Fatigue crack growth behavior of Ni-Cr-Mo-V steel welded joints considering strength mismatch effect 期刊论文
INTERNATIONAL JOURNAL OF FATIGUE, 2021, 卷号: 151, 页码: 17
作者:  Song, Wei;  Wang, Ping;  Wan, Di;  Qian GA(钱桂安);  Correia, Jose;  Berto, Filippo
Adobe PDF(25733Kb)  |  收藏  |  浏览/下载:340/34  |  提交时间:2021/08/30
10CrNi3MoV steel  Fatigue crack growth  Welded joints  R-ratio effect  Material heterogeneity  Mismatch  
Assessment of thermo-mechanical fatigue in a nickel-based single-crystal superalloy CMSX-4 accounting for temperature gradient effects 期刊论文
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2021, 卷号: 809, 页码: 17
作者:  Sun JY(孙靖宇);  Yang Shun;  Yuan Huang
Adobe PDF(15366Kb)  |  收藏  |  浏览/下载:327/66  |  提交时间:2021/05/06
Thermal gradient mechanical fatigue (TGMF)  Temperat u r e gradient  Thermal-mechanical phase angle  Single crystal superalloy  Fatigue life model  
Fatigue endurance limit and crack front evolution in metallic glass 期刊论文
INTERNATIONAL JOURNAL OF FATIGUE, 2021, 卷号: 143, 页码: 9
作者:  Lei XQ(雷现奇);  袁力超o;  Peng, Liu;  Sun CQ(孙成奇);  Wei BC(魏炳忱);  Wei YJ(魏宇杰)
Adobe PDF(9123Kb)  |  收藏  |  浏览/下载:362/59  |  提交时间:2021/03/03
Fatigue endurance limit  Ultra-high cycle fatigue  Metallic glasses  Elliptical crack front  Stress intensity factor  
Fatigue short crack propagation behavior of selective laser melted Inconel 718 alloy by in-situ SEM study: Influence of orientation and temperature 期刊论文
INTERNATIONAL JOURNAL OF FATIGUE, 2020, 卷号: 139, 页码: 14
作者:  Ma X F;  Zhai H L;  Zuo L;  Zhang W J;  Rui S S;  Han Q N;  Jiang J S;  Li C P;  Chen G F;  Qian GA(钱桂安);  Zhao S J
Adobe PDF(8380Kb)  |  收藏  |  浏览/下载:308/146  |  提交时间:2020/08/26
Inconel 718  Selective laser melting  Microstructure  Fatigue short crack growth  In-situ SEM  
Probabilistic framework for fatigue life assessment of notched components under size effects 期刊论文
INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2020, 卷号: 181, 页码: 12
作者:  Liao D;  Zhu SP(朱顺鹏);  Keshtegar B;  Qian GA(钱桂安);  Wang QY
Adobe PDF(2833Kb)  |  收藏  |  浏览/下载:427/295  |  提交时间:2020/08/26
Notch  Fatigue  Size effect  Failure probability  Life prediction  Weibull model  
钛合金高周和超高周疲劳的裂纹萌生与初始扩展行为研究 学位论文
博士论文,北京: 中国科学院大学, 2020
作者:  潘向南
Adobe PDF(16905Kb)  |  收藏  |  浏览/下载:566/38  |  提交时间:2020/05/31
超高周疲劳  应力比  裂纹萌生  微结构  钛合金  
High-cycle and very-high-cycle fatigue behaviour of a titanium alloy with equiaxed microstructure under different mean stresses 期刊论文
FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2019, 卷号: 42, 期号: 9, 页码: 1950-1964
作者:  Pan XN(潘向南);  Hong YS(洪友士)
Adobe PDF(3716Kb)  |  收藏  |  浏览/下载:385/128  |  提交时间:2019/10/14
fatigue crack initiation  mean stress  stress ratio  titanium alloy  very-high-cycle fatigue  
Effect of vortex on mass transport and mixing in microcapillary channels 期刊论文
CHEMICAL ENGINEERING JOURNAL, 2019, 卷号: 362, 页码: 442-452
作者:  Feng XS;  Ren YK;  Sun HZ;  Chen XM;  Zhang KL;  Jia YK;  Hou LK;  Xiao MY;  Jiang HY
Adobe PDF(4441Kb)  |  收藏  |  浏览/下载:314/138  |  提交时间:2019/04/11
Micromixing  Vortex-based micromixer  Mixing enhancement  Experimental analysis  Navier-Stokes equations  
A model to predict S-N curves for surface and subsurface crack initiations in different environmental media 期刊论文
International Journal of Fatigue, 2015, 卷号: 71, 页码: 35-44
作者:  Qian GA(钱桂安);  Zhou CE(周承恩);  Hong YS(洪友士);  Hong, YS (reprint author), Chinese Acad Sci, Inst Mech, State Key Lab Nonlinear Mech, Beijing 100190, Peoples R China.
Adobe PDF(3194Kb)  |  收藏  |  浏览/下载:658/198  |  提交时间:2015/04/16
Very-high-cycle Fatigue  Aqueous Environment  Fatigue Life  Fatigue Crack Initiation  Structural Steel  
Crack propagation mechanism and life prediction for very-high-cycle fatigue of a structural steel in different environmental medias 期刊论文
FRATTURA ED INTEGRITA STRUTTURALE, 2013, 卷号: 7, 期号: 25, 页码: 7-14
作者:  Qian GA(钱桂安);  Zhou CE(周承恩);  Hong YS(洪友士);  Hong YS(洪友士)
Adobe PDF(1888Kb)  |  收藏  |  浏览/下载:867/177  |  提交时间:2014/03/21
Very-high-cycle Fatigue  Aqueous Environment  Stress Intensity Factor  Plastic Zone