IMECH-IR

浏览/检索结果: 共42条,第1-10条 帮助

限定条件        
已选(0)清除 条数/页:   排序方式:
Mobility of the {0110} inversion domain boundary in ZnO nanopillars 期刊论文
MATERIALS LETTERS, 2021, 卷号: 305, 页码: 3
作者:  Wang J(王军);  Zhou, Min;  Yang R(杨荣);  Xiao P(肖攀);  Ke FJ(柯孚久);  Lu CS(卢春生)
Adobe PDF(1069Kb)  |  收藏  |  浏览/下载:262/46  |  提交时间:2021/11/01
ZnO  Inversion domain boundary  Apparent activation energy  Microstructure  Simulation and modelling  
The Evolution of Micromechanical Properties for Zr-Based Metallic Glass Induced by Laser Shock Peening 期刊论文
FRONTIERS IN MATERIALS, 2021, 卷号: 8, 页码: 6
作者:  Li YS(李炎森);  Wang, Zhitao;  Wei YP(魏延鹏);  Chen TY(陈天宇);  Zhang, Chunfeng;  Huan Y(郇勇);  Zhang K(张坤);  Wei BC(魏炳忱)
Adobe PDF(2123Kb)  |  收藏  |  浏览/下载:280/42  |  提交时间:2022/01/24
metallic glass  laser shock peening  nanoindentation  serrations  micromechanical properties  
Dynamic behavior of CrMnFeCoNi high-entropy alloy in impact tension 期刊论文
INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, 2021, 卷号: 158, 页码: 12
作者:  Qiao Y(乔禹);  Chen Y(陈艳);  Cao FH(曹富华);  Wang HY(汪海英);  Dai LH(戴兰宏)
Adobe PDF(18881Kb)  |  收藏  |  浏览/下载:347/93  |  提交时间:2021/11/15
High-entropy alloy  Split Hopkinson tensile bar  Strain rate effect  Dislocation  Twin  
Effect of plasticity and adhesion on the stick-slip transition at nanoscale friction 期刊论文
TRIBOLOGY INTERNATIONAL, 2021, 卷号: 164, 页码: 8
作者:  Hu JQ(胡剑桥);  Liu XM(刘小明);  Wei YG(魏悦广)
Adobe PDF(5926Kb)  |  收藏  |  浏览/下载:293/79  |  提交时间:2021/11/01
Stick-slip transition  Adhesion and plasticity  Critical shear stress  Thermal effect  Molecular dynamics simulation  
Repeatable mechanical energy absorption of ZnO nanopillars 期刊论文
MATERIALS TODAY COMMUNICATIONS, 2021, 卷号: 29, 页码: 8
作者:  Wang J(王军);  Zhou M;  Yang R(杨荣);  Xiao P(肖攀);  Ke FJ(柯孚久);  Lu CS(卢春生)
Adobe PDF(6444Kb)  |  收藏  |  浏览/下载:206/57  |  提交时间:2022/01/12
ZnO nanopillars  Repeatable energy absorption  Phase transformation  Inversion domain boundary  Molecular dynamics  
Phase transition and heterogeneous strengthening mechanism in CoCrFeNiMn high-entropy alloy fabricated by laser-engineered net shaping via annealing at intermediate-temperature 期刊论文
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2021, 卷号: 92, 页码: 129-137
作者:  Bai YJ(白云建);  Jiang H(姜恒);  Yan, Kuo;  Li, Maohui;  Wei YP(魏延鹏);  Zhang K(张坤);  Wei BC(魏炳忱)
Adobe PDF(5383Kb)  |  收藏  |  浏览/下载:346/109  |  提交时间:2022/01/12
High-entropy alloys  Phase transition  Heterogeneous strengthening  Intermediate-temperature  
Coupled Strengthening Effects by Lattice Distortion, Local Chemical Ordering, and Nanoprecipitates in Medium-Entropy Alloys 期刊论文
FRONTIERS IN MATERIALS, 2021, 卷号: 8, 页码: 12
作者:  Cheng WQ(程文强);  Yuan FP(袁福平);  Wu XL(武晓雷)
Adobe PDF(4230Kb)  |  收藏  |  浏览/下载:218/45  |  提交时间:2022/01/13
high-entropy alloys  lattice distortion  local chemical ordering  precipitation  strengthening mechanisms  molecular dynamics simulations  
Effects of Running Speed on Coupling between Pantograph of High-Speed Train and Tunnel Based on Aerodynamics and Multi-Body Dynamics Coupling 期刊论文
APPLIED SCIENCES-BASEL, 2021, 卷号: 11, 期号: 21, 页码: 16
作者:  Ji ZL(纪占玲);  Guo Y(郭易);  Guo DL(郭迪龙);  Yang GW(杨国伟);  Liu YB(刘玉标)
Adobe PDF(48308Kb)  |  收藏  |  浏览/下载:198/34  |  提交时间:2022/01/12
coupling effect between pantograph and tunnel  high-speed pantograph  high-speed train  running speed  coupled aerodynamics and multi-body dynamics  passing through a tunnel  
Elastic impact of sphere on large plate 期刊论文
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2021, 卷号: 156, 页码: 22
作者:  Peng, Qing;  Liu, Xiaoming;  Wei, Yueguang
Adobe PDF(5204Kb)  |  收藏  |  浏览/下载:233/65  |  提交时间:2022/03/05
Elastic impact  Homotopy analysis method  Sphere on plate  Coefficient of restitution  
The Influence of Metastable Cellular Structure on Deformation Behavior in Laser Additively Manufactured 316L Stainless Steel 期刊论文
NANOMATERIALS, 2021, 卷号: 11, 期号: 11, 页码: 13
作者:  Li N(李娜);  Li ZY(李正阳);  Wei YJ(魏宇杰)
Adobe PDF(6117Kb)  |  收藏  |  浏览/下载:238/32  |  提交时间:2022/01/13
laser additive manufacturing  metastable cellular structures  316L stainless steel  coherent precipitates  stacking fault energy