IMECH-IR

浏览/检索结果: 共19条,第1-10条 帮助

限定条件    
已选(0)清除 条数/页:   排序方式:
Numerical investigation of thermocapillary convection instability for large Prandtl number nanofluid in rectangular cavity 期刊论文
INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2022, 卷号: 133, 页码: 9
作者:  Zhou, Xiaoming;  Chi, Faxuan;  Jiang, Yanni;  Chen QS(陈启生)
Adobe PDF(6679Kb)  |  收藏  |  浏览/下载:181/36  |  提交时间:2022/07/18
Nanofluid  Thermocapillary convection  Oscillatory flow  Critical Marangoni number  
A spectral element-based phase field method for incompressible two-phase flows 期刊论文
PHYSICS OF FLUIDS, 2022, 卷号: 34, 期号: 2, 页码: 17
作者:  Xiao Y;  Zeng Z;  Zhang LQ;  Wang JZ(王静竹);  Wang YW(王一伟);  Liu H;  Huang CG(黄晨光)
Adobe PDF(4918Kb)  |  收藏  |  浏览/下载:144/20  |  提交时间:2022/05/17
Multispectral infrared absorption spectroscopy for quantitative temperature measurements in axisymmetric laminar premixed sooting flames 期刊论文
CASE STUDIES IN THERMAL ENGINEERING, 2021, 卷号: 28, 页码: 11
作者:  Ma, Liuhao;  Duan, Kun;  Cheong, Kin-Pang;  Yuan CK(苑朝凯);  Ren, Wei
Adobe PDF(5899Kb)  |  收藏  |  浏览/下载:232/58  |  提交时间:2021/11/29
Temperature measurement  Sooting flame  Multispectral infrared absorption spectroscopy  Optical sensing  
Influence of air-gap and thickness on the upward flame spread over discrete wood chips 期刊论文
THERMAL SCIENCE AND ENGINEERING PROGRESS, 2021, 卷号: 26, 页码: 8
作者:  Zhou, Biao;  Wang, Kai;  Xu, Min;  Yang, Wangyu;  Zhu F(朱凤);  Sun, Biao;  Wang, Xuan;  Ke, Wei
Adobe PDF(5876Kb)  |  收藏  |  浏览/下载:220/42  |  提交时间:2022/01/13
Wooden culture heritage  Wooden historic building  Discrete fuels  Air-gap  Flame spread rate  Mass loss rate  
Modelling the wave-induced instantaneous liquefaction in a non-cohesive seabed as a nonlinear complementarity problem 期刊论文
COMPUTERS AND GEOTECHNICS, 2021, 卷号: 137, 页码: 18
作者:  Zhou, Mozhen;  Liu, Hui;  Jeng, Dong-Sheng;  Qi WG(漆文刚);  Fang, Qian
Adobe PDF(3715Kb)  |  收藏  |  浏览/下载:179/32  |  提交时间:2021/11/01
Nonlinear complementarity problem  Karush-Kuhn-Tucker (KKT) condition  Lagrange multiplier method  Soil liquefaction  Wave-seabed interactions  
Effect of Substrate Microstructure on Thermocapillary Flow and Heat Transfer of Nanofluid Droplet on Heated Wall 期刊论文
MICROGRAVITY SCIENCE AND TECHNOLOGY, 2021, 卷号: 33, 期号: 3, 页码: 10
作者:  Jiang, Yanni;  Chi, Faxuan;  Chen QS(陈启生);  Zhou, Xiaoming
Adobe PDF(1467Kb)  |  收藏  |  浏览/下载:263/68  |  提交时间:2021/06/15
Droplet  Substrate microstructure  Nanofluid  Thermocapillary convection  Two-phase mixture model  Heat transfer  
Reinforcement effect of polypropylene fiber on dynamic properties of cemented tailings backfill under SHPB impact loading 期刊论文
CONSTRUCTION AND BUILDING MATERIALS, 2021, 卷号: 279, 页码: 11
作者:  Xue Gaili;  Yilmaz Erol;  Feng Guorui;  Cao Shuai;  Sun LJ(孙立娟)
Adobe PDF(3413Kb)  |  收藏  |  浏览/下载:307/63  |  提交时间:2021/05/17
Cemented tailings backfill  Fiber reinforcement  Waveform properties  Dynamic strength  Failure mode  
Synthesis and characterization of light-weight porous ceramics used in the transpiration cooling 期刊论文
ACTA ASTRONAUTICA, 2020, 卷号: 177, 页码: 438-445
作者:  Zhang, Bo;  Huang, Jie;  Li, Weijie;  Huang, Haiming;  Zhao, Huanyu;  Peng JL(彭锦龙)
Adobe PDF(8097Kb)  |  收藏  |  浏览/下载:369/68  |  提交时间:2021/03/30
Carbon fiber-reinforced silicon carbide porous ceramics  Permeability  Oxyacetylene flame test  Transpiration cooling  
Study of shock train/flame interaction and skin-friction reduction by hydrogen combustion in compressible boundary layer 期刊论文
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 卷号: 45, 期号: 31, 页码: 15683-15696
作者:  Xue R(薛瑞);  Zheng X;  Yue LJ(岳连捷);  Zhang SK;  Weng C
Adobe PDF(3251Kb)  |  收藏  |  浏览/下载:337/111  |  提交时间:2020/07/06
Compressible boundary layer combustion  Skin-friction reduction  Shock train/flame interaction  
Experimental and numerical study of separation characteristics in gas-liquid cylindrical cyclone 期刊论文
CHEMICAL ENGINEERING SCIENCE, 2020, 卷号: 214, 页码: 18
作者:  Yang LL(杨乐乐);  Zhang J(张健);  Ma Y;  Xu JY(许晶禹);  Wang J
Adobe PDF(3699Kb)  |  收藏  |  浏览/下载:315/113  |  提交时间:2020/05/18
Gas-liquid cylinder cyclone  Droplets  Breakup  Coalescence  Migration model