IMECH-IR

Browse/Search Results:  1-10 of 21 Help

  Show only claimed items
Selected(0)Clear Items/Page:    Sort:
适用于可压缩壁湍流的尺度自适应数值方法 会议论文
第十届全国流体力学学术会议, 中国浙江杭州, 2018年10月25日至28日
Authors:  李理;  何志伟;  田保林;  李新亮
View  |  Adobe PDF(135Kb)  |  Favorite  |  View/Download:7/3  |  Submit date:2019/11/21
尺度自适应  高精度格式  可压缩湍流  转捩  激波/边界层干扰  
Hydrodynamic force and torque models for a particle moving near a wall at finite particle Reynolds numbers 期刊论文
INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2017, 卷号: 92, 页码: 1-19
Authors:  Zhou ZD(周志登);  Jin GD(晋国栋);  Tian BL(田宝林);  Ren J;  Jin, GD (reprint author), Chinese Acad Sci, Inst Mech, LNM, Beijing 100190, Peoples R China.;  Jin, GD (reprint author), Univ Chinese Acad Sci, Sch Engn Sci, Beijing 100049, Peoples R China.
View  |  Adobe PDF(4108Kb)  |  Favorite  |  View/Download:176/35  |  Submit date:2017/09/06
Models For Hydrodynamic Force And Torque  Finite Particle Reynolds Number  Near-wall Effect  Particle-resolved Simulation  Sub-grid Scale Model  Eulerian-lagrangian Simulation  
双流体模型方程模拟RM不稳定性 会议论文
第九届全国流体力学学术会议, 中国江苏南京, 2016-10-20
Authors:  周智睿;  田保林;  晋国栋
View  |  Adobe PDF(125Kb)  |  Favorite  |  View/Download:55/8  |  Submit date:2017/09/27
Rti  颗粒  多相流  Lbm  
一般性瑞利-泰勒流动的混合宽度演化 会议论文
第九届全国流体力学学术会议, 中国江苏南京, 2016-10-20
Authors:  张又升;  田保林;  何志伟;  高福杰;  李新亮
View  |  Adobe PDF(126Kb)  |  Favorite  |  View/Download:97/32  |  Submit date:2017/09/27
变加速历史  任意密度比  瑞利-泰勒不稳定性  守恒性原理  
Preventing numerical oscillations in the flux-split based finite difference method for compressible flows with discontinuities, II 期刊论文
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2016, 卷号: 80, 期号: 5, 页码: 306-316
Authors:  He ZW;  Zhang YS;  Li XL(李新亮);  Tian BL;  Tian, BL (reprint author), Inst Appl Phys & Computat Math, Beijing 100094, Peoples R China.
View  |  Adobe PDF(400Kb)  |  Favorite  |  View/Download:187/58  |  Submit date:2016/03/21
Contact Discontinuity  Material Interface  Finite Difference Method  Flux Vector Splitting  Local Characteristic Decomposition  Equation Of State  Weno  
Evolution of mixing width induced by general Rayleigh-Taylor instability 期刊论文
PHYSICAL REVIEW E, 2016, 卷号: 93, 期号: 6, 页码: 63102
Authors:  Zhang YS;  He ZW;  Gao FJ;  Li XL(李新亮);  Tian BL;  Tian, BL (reprint author), Inst Appl Phys & Computat Math, Key Lab Computat Phys, Beijing 100094, Peoples R China.
View  |  Adobe PDF(545Kb)  |  Favorite  |  View/Download:153/39  |  Submit date:2016/09/14
Robotic Fish  Capability Optimization  The Taguchi Method  
An improved accurate monotonicity-preserving scheme for the Euler equations 期刊论文
COMPUTERS & FLUIDS, 2016, 卷号: 140, 页码: 1-10
Authors:  He ZW;  Zhang YS;  Gao FJ;  Li XL(李新亮);  Tian BL;  Tian, BL (reprint author), Inst Appl Phys & Computat Math, Lab Computat Phys, Beijing 100094, Peoples R China.
View  |  Adobe PDF(2461Kb)  |  Favorite  |  View/Download:80/30  |  Submit date:2017/02/24
Monotonicity-preserving  Accuracy-preserving  Tvd  Flux Limiter  Hyperbolic Conservation Laws  
Preventing numerical oscillations in the flux-split based finite difference method for compressible flows with discontinuities 期刊论文
JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 卷号: 300, 页码: 269-287
Authors:  He ZW;  Zhang YS;  Li XL(李新亮);  Li L;  Tian BL;  Tian, BL (reprint author), Inst Appl Phys & Computat Math, Lab Computat Phys, Beijing 100094, Peoples R China.
View  |  Adobe PDF(1414Kb)  |  Favorite  |  View/Download:277/72  |  Submit date:2016/01/08
Compressible Flows  Contact Discontinuity  Material Interface  Numerical Oscillations  Finite Difference Method  Flux Vector Splitting  Weno  
对称(破缺)观下控制瑞利-泰勒不稳定性后期混合宽度演化的守恒性原理 会议论文
中国力学大会-2015, 中国上海, 2015-08-16
Authors:  张又升;  田保林;  何志伟;  高福杰;  李新亮
View  |  Adobe PDF(210Kb)  |  Favorite  |  View/Download:57/11  |  Submit date:2016/08/16
泰勒不稳定性  牛顿第二定律  常微分方程  守恒性  质量守恒  速度梯度  动量守恒  密度比  瑞利  
The Realization of Non-reflecting Boundaries for Compressible Rayleigh-Taylor Flows with Variable Acceleration Histories 期刊论文
Procedia Engineering, 2015, 卷号: 126, 页码: 118-122
Authors:  Zhang YS(张又升);  He ZW(何志伟);  Li XL(李新亮);  Tian BL(田保林)
View  |  Adobe PDF(205Kb)  |  Favorite  |  View/Download:35/8  |  Submit date:2016/08/25
Boundary Conditions  Non-reflecting  Rayleigh-taylor  Variable Acceleration