IMECH-IR  > 高温气体动力学国家重点实验室
Modeling analysis on the silica glass synthesis in a hydrogen diffusion flame
Yao W(姚卫); Zheng LL; Zhang Hui; Zhang, H (reprint author), Tsinghua Univ, Dept Engn Phys, Beijing 100084, Peoples R China.
发表期刊INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER
2015-02
卷号81页码:797-803
ISSN0017-9310
摘要

Silica glass ingot synthesis by flame hydrolysis deposition (FHD) is an important approach to obtain high-purity synthetic silica glass with high refractive index homogeneity. Using the precursor of silicon tetrachloride (SiCI4), the silica ingot (SiO2) can be synthesized in the oxy-hydrogen diffusion flame through a set of kinetic reactions and subsequent cooling. The homogeneity of the synthetic silica glass is influenced by the temperature/diameter equality of silica droplets and the residue of radicals (e.g. OH) in the synthetic silica. In this study, the mixing system of oxy-hydrogen diffusion flame and silica droplets in a furnace were modeled by a Euler-Lagrange multi-phase model, where the interphase exchange of mass, momentum and energy between the gas phase molecules and liquid phase silica droplets during the formation and transportation of silica droplets were included. The silica droplets were tracked by a Lagrangian formulation that includes the discrete phase inertia, hydrodynamic drag, the force of gravity and the dispersion due to turbulent eddies. The molecular gas phase reactions are described by a simple kinetic mechanism involving the major species during the formation of molecular SiO2, with kinetic and thermodynamic parameters taken from the literature when available. The effect of initial equivalence ratio on the flame structure was analyzed in the study, where the high-temperature region is uniform over the glass ingot and the residue is limited at unity equivalence ratio. The probability distributions of silica droplet diameter and temperature were analyzed by employing a developed droplet growth model, where the condensation rate is controlled by the in situ SiO2 vapor concentration and the local flow-condition-determined mass transfer rate. The maximum diameter of silica droplets in the furnace is 1.39 x 10(-4) m, and the percentage of silica droplets decreases with the increasing of diameter. Two high probability regions were observed for the droplet temperature distribution, the temperature below 1500 K accounts for 40% of the total droplet number, and the temperature range between 3500 and 4500 K accounts for 58%. The droplet diameter on the ingot cap distributes in the range from 4 x 10(-5) to 9 x 10-5 m with approximately probability of 85%. The distribution of droplet temperature on the ingot cap is much uniform, with more than half (67%) of the droplets has the temperature between 3100 and 3200 K. (C) 2014 Elsevier Ltd. All rights reserved.

关键词Silica Glass Flame Hydrolysis Deposition Multiphase Model Modeling Hydrogen Flame
学科领域Thermodynamics ; Engineering ; Mechanics
DOI10.1016/j.ijheatmasstransfer.2014.11.004
URL查看原文
收录类别SCI ; EI
语种英语
WOS记录号WOS:000346951400076
项目资助者This work was partially supported by National Basic Research Program of China (973 Program No: 2012CB719705).
论文分区一类
引用统计
被引频次:11[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://dspace.imech.ac.cn/handle/311007/49593
专题高温气体动力学国家重点实验室
通讯作者Zhang, H (reprint author), Tsinghua Univ, Dept Engn Phys, Beijing 100084, Peoples R China.
推荐引用方式
GB/T 7714
Yao W,Zheng LL,Zhang Hui,et al. Modeling analysis on the silica glass synthesis in a hydrogen diffusion flame[J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER,2015,81:797-803.
APA Yao W,Zheng LL,Zhang Hui,&Zhang, H .(2015).Modeling analysis on the silica glass synthesis in a hydrogen diffusion flame.INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER,81,797-803.
MLA Yao W,et al."Modeling analysis on the silica glass synthesis in a hydrogen diffusion flame".INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER 81(2015):797-803.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
IMCAS-J2015-028.pdf(1009KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
Lanfanshu学术
Lanfanshu学术中相似的文章
[Yao W(姚卫)]的文章
[Zheng LL]的文章
[Zhang Hui]的文章
百度学术
百度学术中相似的文章
[Yao W(姚卫)]的文章
[Zheng LL]的文章
[Zhang Hui]的文章
必应学术
必应学术中相似的文章
[Yao W(姚卫)]的文章
[Zheng LL]的文章
[Zhang Hui]的文章
相关权益政策
暂无数据
收藏/分享
文件名: IMCAS-J2015-028.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。