IMECH-IR  > 非线性力学国家重点实验室
Dynamic strength, reinforcing mechanism and damage of ceramic metal composites
Lin, Kuixin; Zeng, Meng; Chen, Hongmei; Tao, Xiaoma; Ouyang, Yifang; Du, Yong1; Peng Q(彭庆)
发表期刊INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES
2022-10
卷号231页码:107580
ISSN0020-7403
摘要Shock tolerance is desirable for ceramic particles-reinforced metal matrix composites in many applications, where the dislocation dynamics evolution under the extreme load is the key but still elusive. Herein, we have investigated the dislocation motion and interaction under shock loading of SiC/Al nanocomposites using molecular dynamics simulations. We have demonstrated that the plastic deformation occurs at an impact velocity (0.5 km/s) lower than the Hugoniot elastic limit of aluminum due to the reflected shear wave effect. The Al/SiC interfaces act as a dislocation emitter to control dislocation multiplication density and slip direction, opening a new pathway to achieve ultrahigh-strength via shock loading. When the impact velocity (1.0 or 1.5 km/s) exceeds the Hugoniot elastic limit, the effect of nanoparticles on dislocation structure has changed from multiplying to retarding dislocations. The spall strength of composites improves due to dislocations pile-up at interface. Instead, the damage in the matrix is exacerbated, owing to the enhanced residual peak stress and interface reflection waves. In addition, the effect of abnormal shock softening determined by atomic velocity is revealed, which could be suppressed by increasing impact energy dissipation. Meanwhile, dynamic compressive strength depends on pressure and dislocation structures evolution. Our atomistic insights might be helpful in designing advanced shock-tolerant materials.
关键词Shock wave Dislocation dynamic Hugoniot elastic limit Nanocomposites
学科领域Engineering, Mechanical ; Mechanics
DOI10.1016/j.ijmecsci.2022.107580
收录类别SCI ; EI
语种英语
WOS记录号WOS:000856556000003
项目资助者National Natural Science Foundation of China [11964003] ; Guangxi Natural Science Foundation [2019GXNSFAA185058, 2018GXNSFAA281291] ; LiYing Program of the Institute of Mechanics, Chinese Academy of Sciences [E1Z1011001]
论文分区一类
力学所作者排名3+
RpAuthorOuyang, YF (corresponding author), Guangxi Univ, Sch Phys Sci & Technol, Guangxi Key Lab Proc Nonferrous Metall & Featured, Nanning 530004, Peoples R China.
引用统计
被引频次:9[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://dspace.imech.ac.cn/handle/311007/90173
专题非线性力学国家重点实验室
作者单位1.Guangxi Univ, Sch Phys Sci & Technol, Guangxi Key Lab Proc Nonferrous Metall & Featured, Nanning 530004, Peoples R China
2.Cent South Univ, State Key Lab Powder Met, Changsha 410083, Peoples R China
3.Chinese Acad Sci, Inst Mech, State Key Lab Nonlinear Mech, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Lin, Kuixin,Zeng, Meng,Chen, Hongmei,et al. Dynamic strength, reinforcing mechanism and damage of ceramic metal composites[J]. INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES,2022,231:107580.
APA Lin, Kuixin.,Zeng, Meng.,Chen, Hongmei.,Tao, Xiaoma.,Ouyang, Yifang.,...&彭庆.(2022).Dynamic strength, reinforcing mechanism and damage of ceramic metal composites.INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES,231,107580.
MLA Lin, Kuixin,et al."Dynamic strength, reinforcing mechanism and damage of ceramic metal composites".INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES 231(2022):107580.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Jp2022FA124_2022_Dyn(27064KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
Lanfanshu学术
Lanfanshu学术中相似的文章
[Lin, Kuixin]的文章
[Zeng, Meng]的文章
[Chen, Hongmei]的文章
百度学术
百度学术中相似的文章
[Lin, Kuixin]的文章
[Zeng, Meng]的文章
[Chen, Hongmei]的文章
必应学术
必应学术中相似的文章
[Lin, Kuixin]的文章
[Zeng, Meng]的文章
[Chen, Hongmei]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Jp2022FA124_2022_Dynamic strength, reinforcing mechanism and damage of ceramic metal composites.pdf
格式: Adobe PDF
此文件暂不支持浏览
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。