IMECH-IR  > 高温气体动力学国家重点实验室
数据驱动的爆轰波化学反应加速计算方法研究
英文题名Investigation on the data-driven computing acceleration method of chemical simulation of detonation wave
杨瑞鑫
导师王春
2023-05-20
学位授予单位中国科学院大学
学位授予地点北京
学位类别博士
学位专业流体力学
关键词爆轰波 化学反应面 GPU 加速 简化机理 遗传算法 神经网络
摘要

气相爆轰波的起爆与传播过程伴随着多种物理现象相互作用,如气体动力学、热力学、化学反应动力学与激波动力学等现象,流动过程十分复杂。其中所涉及到的许多基础问题仍然缺乏详尽、深入、准确的认识。爆轰波传播与起爆的核心物理机制是非线性波传播与化学反应带相互作用,化学反应模型的精确建模是定量研究气相爆轰物理的重要一环。在爆轰波起爆和传播的数值模拟中,使用详细化学反应机理存在计算耗时特别严重的问题,而使用简化反应机理或是总包反应机理则会大幅降低计算精度,因此如何能在提高计算效率的前提上提升计算精度成为了爆轰数值模拟中的重要问题。同时,在爆轰现象的实验中,精确测量化学反应面上各组分的分布信息是十分困难的,利用其它信息组合还原出化学反应信息是一件极为有价值的工作。另外,现在人工智能方法层出不穷,有许多先进的人工智能算法已经应用在物理研究中,以从唯象学的角度出发更好地对物理现象进行分析建模。在这样的研究背景下,本文以数值模拟为基础和主要数据来源,以敏感性分析、遗传优化算法和ANNArtificial Neural Network)方法为主要研究手段,针对爆轰波传播过程中的GPU加速、组合修正机理、化学反应面信息重构以及化学反应源项计算的DCSNNDetonation Chemical Source Neural Network)建模开展了相关研究。

首先,在CPU上用C++语言构建的模块化爆轰波数值模拟程序基础上,利用CUDA语言移植到GPU平台上。针对二维正爆轰波的传播过程进行了验证,得到了相当于CPU平台上160倍加速比的效果,证明了GPU能够高效地用于爆轰波数值模拟。

由于详细化学反应机理组分数目多、反应数目多、刚性严重带来的计算耗时巨大,使用简化机理则在组分浓度、最终火焰温度、点火延迟时间、比热比、摩尔质量等物理量上可达到10% 量级上的误差。对于爆轰波传播过程中最为重要的动力学参数胞格尺寸来说,这些物理量均对计算胞格宽度有着重要影响。本文使用组合修正模型以在维持简化化学反应机理的计算效率的同时提高化学反应的计算精度。在验证了敏感性分析得到的简化化学机理的有效性后,使用遗传算法进一步得到组合修正模型。然后,本文对组合修正模型和简化机理进行分析对比,组分浓度相对误差从10%量级降低到了0.1%量级,最终温度相对误差从1%量级降低到0.01%量级,点火延迟误差从0.7%降低到0.1%,摩尔质量与比热比的误差也因此大大减少。分析了使用组合修正模型能够在计算爆轰波传播的关键动力学参数胞格尺寸方面上的影响。

在现有的爆轰数值模拟中,往往使用总包反应模型进行计算。总包反应模型能够在气动信息如压强分布、温度分布、密度分布方面得到与实验结果较为符合的结果,但不能得到各组分的分布信息。在爆轰实验中,以目前的实验技术也很难得到各组分的精确分布信息,但对气动信息的测量往往比较容易。因此,本文提出了一种爆轰波传播过程中利用气动信息对化学反应信息进行重构的CNNConvolution Neural Network)方法。使用详细化学反应机理计算得到不同时刻的流场分布作为训练样本,以整个流场的气动信息作为输入并以化学反应面上的组分浓度分布作为输出。针对典型的起爆和稳定传播阶段进行了分析,验证了化学反应面重构的有效性。另外,本文还针对不同的气动信息组合进行了模型训练,分析了不同气动信息组合的预测结果,证明在1%左右的误差允许下,使用密度、速度、压力联合预测与仅使用压力预测均能有效地还原重构出化学反应面的浓度分布。

在爆轰波数值模拟中的关键问题,也就是如何建立合适简化的化学反应机理模型这个问题上,要有丰富的化学反应动力学的知识,根据爆轰波的特点从详细机理中挑选关键反应得到简化机理。本文建立了一种DCSNN/CFD耦合计算方法用于爆轰波传播过程的高效数值模拟。在CPU上利用本人开发的模块化程序,能够将化学反应源项模块快速替换,高效地进行爆轰波数值模拟。在对一维爆轰波传播过程进行验证后,使用DCSNN/CFD耦合计算方法在计算爆轰波稳定传播时的CJ点压力、温度、密度、波速与详细化学反应机理对比,相对误差均在1%量级,证明了方法的可靠性。同时分析了不同网格量的加速效果,发现当前DCSNN模型已经能取得13.2左右的加速比,DCSNN/GPU耦合能获得2000倍左右的加速比,证明了DCSNN/CFD耦合计算方法的高效性。

 

英文摘要

The initiation and propagation of gas-phase detonation waves are coupled with various physical phenomena, such as gas dynamics, thermodynamics, chemical reaction dynamics and shock dynamics etc., the flow process is very complex. At present, many fundamental problems associated with the initiation and propagation of detonation waves still lack a detailed, in-depth and accurate understanding. The core physical mechanism of detonation wave initiation and propagation is the interaction between nonlinear wave propagation and chemical reaction zone. The accurate modeling of chemical reaction model is an important part of quantitative investigation on detonation physics. In the numerical simulation of detonation wave propagation, using detailed reaction mechanism causes serious computational time-consuming problem, while the using simplified reaction mechanism or one-step reaction mechanism will greatly reduce the calculation accuracy, so how to improve the calculation efficiency and increase the computational accuracy has become an important issue in the numerical simulation of detonation wave. At the same time, in the experiments of detonation, it is very difficult to accurately measure the distribution information of each component on the chemical reaction zone. It is a very valuable work to combine other information to restore the chemical reaction information. In addition, artificial intelligence techniques develop faster and faster. Many advanced artificial intelligence algorithms have been applied in the study of physical problem to better analyze and model physical phenomena from the perspective of phenomenology. Under such a research background, this paper is based on numerical simulation as the main data source, with GPU acceleration, sensitivity analysis, genetic optimization algorithm and ANN (Artificial Neural Network) method as the main research methods in the process of detonation wave propagation, Relevant researches have been carried out on mechanism modification, chemical reaction information reconstruction and DCSNN(Detonation Chemical Source Neural Network) modeling of chemical reaction source term calculation.

First of all, based on the modular detonation wave numerical simulation program built in C++ language on the CPU, the CUDA language is used to port it to the GPU platform. The GPU acceleration method was verified by simulating the propagation process of a two-dimensional normal detonation wave, and a speedup of about 160 times was obtained. This proves that the developed GPU acceleration method can efficiently simulate detonation wave propagation.

Because of the huge number of components, the number of reactions, and the severe rigidity of the detailed chemical reaction mechanism, the calculation is time-consuming, while the simplified mechanism is used in component concentrations, the physical quantities of final flame temperature, ignition delay time, specific heat ratio, molar mass may have errors up to 10%. For the detonation cell size, which is the most important dynamic parameter in the detonation wave propagation process, these physical quantities have an important influence on the calculation of the cell width. This paper uses a combined modified model to improve the computational accuracy of chemical reactions while maintaining the computational efficiency of the simplified mechanism. After verifying the effectiveness of the simplified mechanism obtained by the sensitivity analysis, the combined modified model is obtained by using the genetic algorithm. Then, this paper analyzes and compares the combined modified model and the simplified mechanism. The component concentration error is reduced from 10% to 0.1%, the final temperature error is reduced from 1% to 0.01%, and the ignition delay error is reduced from 0.7 % is reduced to 0.1%, and the error of molecular weight and specific heat ratio is also greatly reduced. This paper also analyses the influence of  combined modified model on calculating the cell size, a key dynamic parameter of detonation wave propagation.

In the existing detonation numerical simulation, the one-step or two-step reaction model is often used. These reaction models may obtain aerodynamic information consistent with the experimental such as pressure distribution, temperature distribution, and density distribution, but cannot obtain the detail distribution information of species concentration. On the other hand, in the detonation experiment, it is difficult to obtain the precise species concentration distribution information with the current experimental technology, but it is often easier to measure the aerodynamic information. Therefore, this paper proposes a CNN(Convolution Neural Network) method to reconstruct the chemical reaction information based on aerodynamic information during detonation wave propagation. The detailed chemical reaction mechanism is used to calculate the flow field distribution at various times as training samples, the aerodynamic information of the entire flow field is used as input and the species concentration distribution on the chemical reaction surface is used as output. The typical initiation and stable propagation phases are analyzed to verify the effectiveness of the chemical reaction zone reconstruction. In addition, this paper also conducts model training for different combinations of aerodynamic information, and analyzes the prediction results of different combinations of aerodynamic information. With an acceptable error of about 1%, the concentration distribution within the chemical reaction surface can be effectively reconstructed by the combined prediction using density, velocity and pressure, or by the prediction using pressure alone.

In terms of the simplification of the chemical reaction mechanism of the detonation wave numerical simulation, it is necessary to have rich knowledge of chemical reaction kinetics, and select the key reactions from the detailed mechanism according to the characteristics of the detonation wave, and the simplified mechanism obtained may still have rigid problems and thus the calculation is time-consuming. In this paper, a DCSNN/CFD coupling calculation method is proposed to establish a fast calculation method for the chemical reaction source term in the numerical simulation of detonation wave.After verification by simulating the one-dimensional detonation wave propagation, the DCSNN/CFD coupling method is used to calculate the CJ point pressure, temperature, density and wave velocity. At the stable propagation stage of detonation waves, compared with the detailed chemical reaction mechanism, the relative errors of the calculation results by the DCSNN/CFD coupling method are all in the order of 1%, indicating the reliability of this method. At the same time, the acceleration effect of different grid quantities is analyzed, and it is found that the DCSNN model can achieve a speedup ratio of about 13.2 and DCSNN/GPU model can achieve a speedup ratio of about 2000, which proves the efficiency of the DCSNN/CFD coupling calculation method.

语种中文
文献类型学位论文
条目标识符http://dspace.imech.ac.cn/handle/311007/92319
专题高温气体动力学国家重点实验室
推荐引用方式
GB/T 7714
杨瑞鑫. 数据驱动的爆轰波化学反应加速计算方法研究[D]. 北京. 中国科学院大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
81886.pdf(6399KB)学位论文 开放获取CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
Lanfanshu学术
Lanfanshu学术中相似的文章
[杨瑞鑫]的文章
百度学术
百度学术中相似的文章
[杨瑞鑫]的文章
必应学术
必应学术中相似的文章
[杨瑞鑫]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。