IMECH-IR  > 高温气体动力学国家重点实验室
高温金属液体转盘雾化的流体动力学研究
英文题名Fluid Dynamics Study on the Atomization of High-Temperature Metal Liquid by Rotating Disc
彭磊
导师李龙
2023-05-25
学位授予单位中国科学院大学
学位授予地点北京
学位类别硕士
学位专业流体力学
关键词转盘,离心雾化,数值模拟,分裂模式,粒径分布
摘要

伴随工业化的快速发展,我国迫切需要进行新材料的研发与生产。球形金属粉末作为现代工业生产中不可或缺的先进生产原料,急需发展一种高性能低成本的粉末制造方法。对比双流雾化和等离子旋转电极雾化等传统粉末制造方法,转盘离心雾化法生产的粉末具有球形度好、粒径均一、粉末间无粘黏和无空心粉等特点,具有广阔的应用前景。现阶段转盘离心雾化法主要制备较低熔点的金属粉末,高熔点金属在雾化时会对转盘和高速电机造成过热烧蚀等问题,所以高熔点金属的转盘离心雾化仍处于实验阶段。为加速高熔点金属雾化的工业化进程,本文对转盘离心雾化过程中的耦合传热和入流偏心问题进行了数值研究,设计并搭建了高温金属离心雾化实验平台,开展了以铝为原料的转盘离心雾化实验研究,主要内容如下:

1)对转盘及雾化流场进行了流固热耦合数值模拟,分析了不同转盘材料对自身传热特性的影响,得到了转盘材料合适的物理属性特征。提出了一种转轴周边添加肋片的新型转盘构型,数值仿真并分析了肋片位置高度、肋片直径和肋片厚度对转轴底端温度的显著性影响,对肋片特征进行优化设计,得到了最优的肋片结构,提高了转轴散热能力。

2)偏心入流是实验与生产过程中不可避免的流动现象,利用VOF方法对偏心入流的转盘离心雾化进行仿真模拟研究。通过与中心入流雾化对比,发现了一种新的液丝断裂模式,同时偏心入流会直接导致转盘表面液膜分布不均,通过研究各偏心率下转盘边缘液膜厚度、雾化液滴直径分布等特征,获得了偏心入流对雾化结果的影响规律。

3)设计并搭建了应用于转盘雾化研究的原理样机和高温实验平台,对1060纯铝进行了转盘离心雾化实验研究。观察了金属铝液流至转盘上表面后铺展雾化为粉末的全过程,并对雾化后转盘表面形貌进行分析。实验研究了流量、转速、盘径以及盘面构型对雾化粉末粒径分布的影响,最终总结得到无量纲形式的粒径预测公式。

综上所述,本文针对电机过热烧蚀提出了一种转盘结构的优化方法,通过数值和实验进行了转盘雾化的流体动力学研究。研究结果有助于了解转盘雾化过程中流体运动与粒径分布规律,推动高温金属转盘雾化的发展。

英文摘要

Along with the rapid development of industrialization, it is an urgent to develop approaches for the research and production of new materials in China. As an indispensable, advanced production raw material in modern industrial production, it necessities to develop a high-performance and low-cost powder manufacturing method to produce spherical metal powder. Compared to traditional powder manufacturing methods such as twin-flow atomization and plasma rotating electrode process, the rotary disc centrifugal atomization method can produce powder with good sphericity, uniform particle size, no adhesion between powders and no hollow powder, which shows a potential of broad application. At present, the rotary disc centrifugal atomization method is mainly used to produce metal powders with lower melting points, and the high melting point metal atomization will cause overheating and ablation to the rotary disc and high-speed motor, so it is still limited to the laboratory-level stage for producing metals with high melting points. To accelerate the industrialization of high melting point metal atomization, simulations are performed to investigate the coupling heat transfer and the inlet eccentricity problem in the rotary disc centrifugal atomization process in this work. Furthermore, an in-house developed platform for centrifugal atomization of high-temperature metals is used to experimentally conduct experiments on rotary disc centrifugal atomization with aluminum as raw material. The main contents are as follows:

1) Simulations on the fluid-solid-thermal coupling of the disc and atomization flow field were carried out, and the influence of different disc materials on the characterization of the disc was investigated, and thus obtain the suitable physical property characteristics of the disc materials. A new disc configuration with a fin around the rotary shaft is proposed, and the effects of fin position height, fin diameter and fin thickness on the bottom temperatures of the rotary shaft are numerically calculated and analyzed. The fin characteristics are optimized to obtain the optimal fin structure and improve the heat dissipation capacity of the rotary shaft.

2) Eccentric entry is an inevitable flow phenomenon that occurs in experiments and production processes, the VOF method was employed to study the centrifugal atomization of a disc with eccentric entry. By comparing with the center inflow atomization, a new filament breakage mode is found. Meanwhile, the eccentric inflow would directly lead to an uneven distribution of liquid film on the surface of the disc. The influence of eccentric inflow on the atomization is comprehensively studied with a comprehensive investigation on the characterization of liquid film thickness, diameter distribution of atomized droplets at the edge of the disc under each eccentricity.

3) The principle prototype and high-temperature experimental platform were in-house designed and built for the study of rotary disc centrifugal atomization, the rotary disc centrifugal atomization for 1060 pure aluminum was carried out. The process of spreading and atomization of molten metal to powder after flowing onto the upper surface of the disc was observed, and the morphology of the disc surface after atomization was analyzed. The effects of flow rate, rotational speed, disc diameter and disc configuration on the distribution of the atomized powder particle sizes were investigated, a dimensionless form of the particle size prediction equation was proposed as well.

In summary, this study proposes an optimization method of disc structure for motor overheating ablation, and the fluid dynamics study of rotary disc atomization is carried out numerically and experimentally. The results of the study help to understand the fluid motion and particle size distribution law in the rotary disc atomization process and promote the development of rotary disc atomization of high-temperature metals.

语种中文
文献类型学位论文
条目标识符http://dspace.imech.ac.cn/handle/311007/92327
专题高温气体动力学国家重点实验室
推荐引用方式
GB/T 7714
彭磊. 高温金属液体转盘雾化的流体动力学研究[D]. 北京. 中国科学院大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
81900.pdf(14831KB)学位论文 开放获取CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
Lanfanshu学术
Lanfanshu学术中相似的文章
[彭磊]的文章
百度学术
百度学术中相似的文章
[彭磊]的文章
必应学术
必应学术中相似的文章
[彭磊]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。