IMECH-IR

浏览/检索结果: 共145条,第1-10条 帮助

限定条件                    
已选(0)清除 条数/页:   排序方式:
The Effect of Impact Load on the Atomistic Scale Fracture Behavior of Nanocrystalline bcc Iron 期刊论文
NANOMATERIALS, 2024, 卷号: 14, 期号: 4, 页码: 11
作者:  Zhao ZF(赵志福);  Wang, Zhen;  Bie, Yehui;  Liu XM(刘小明);  Wei, Yueguang
收藏  |  浏览/下载:11/0  |  提交时间:2024/04/02
molecular dynamics simulation  nanocrystalline iron  impact load  fracture resistance  fracture ductility  
A method of quasi in-situ EBSD observation for microstructure and damage evolution in fatigue and dwell fatigue of Ti alloys 期刊论文
INTERNATIONAL JOURNAL OF FATIGUE, 2023, 卷号: 176, 页码: 20
作者:  Sun CQ(孙成奇);  Sun, Jian;  Chi WQ(池维乾);  Wang JX(王家璇);  Wang, Wenjing
Adobe PDF(61134Kb)  |  收藏  |  浏览/下载:116/2  |  提交时间:2023/10/16
Ti-6Al-4V ELI titanium alloy  Low cycle fatigue  Dwell fatigue  Deformation twinning  Failure mechanism  
Tailoring the Atomic-Local Environment of Carbon Nanotube Tips for Selective H2O2 Electrosynthesis at High Current Densities 期刊论文
ADVANCED MATERIALS, 2023, 页码: 11
作者:  Long, Yongde;  Lin JG(林金国);  Ye, Fenghui;  Liu, Wei;  Wang, Dan;  Cheng, Qingqing;  Paul, Rajib;  Cheng, Daojian;  Mao, Baoguang;  Yan, Riqing;  Zhao, Linjie;  Liu, Dong;  Liu F(刘峰);  Hu, Chuangang
Adobe PDF(4810Kb)  |  收藏  |  浏览/下载:48/1  |  提交时间:2023/11/28
carbon nanotubes  electrocatalysis  hydrogen peroxide  pure H2O2 solution production  tip atomic environment  
Emergent failure transition of pearlitic steel at extremely high strain rates 期刊论文
COMPUTATIONAL MATERIALS SCIENCE, 2023, 卷号: 219, 页码: 13
作者:  Liang LW(梁伦伟);  Dai SC(戴仕诚);  Chen Y(陈艳);  Wang HY(汪海英);  Wang YJ(王云江);  Dai LH(戴兰宏)
Adobe PDF(20162Kb)  |  收藏  |  浏览/下载:106/0  |  提交时间:2023/03/20
Pearlitic steels  Fracture  Crack  Dislocation nucleation  Molecular dynamics  
High cycle and very high cycle fatigue of TC17 titanium alloy: Stress ratio effect and fatigue strength modeling 期刊论文
INTERNATIONAL JOURNAL OF FATIGUE, 2023, 卷号: 166, 页码: 16
作者:  Li G(李根);  Ke, Lei;  Ren, Xuechong;  Sun CQ(孙成奇)
Adobe PDF(30455Kb)  |  收藏  |  浏览/下载:216/1  |  提交时间:2022/11/28
TC17 titanium alloy  High cycle fatigue  Very high cycle fatigue  Stress ratio  Crack initiation mechanism  Fatigue strength modeling  
Atomistic scale behaviors of intergranular crack propagation along twist grain boundary in iron under dynamic loading 期刊论文
ENGINEERING FRACTURE MECHANICS, 2022, 卷号: 273, 页码: 16
作者:  Zhao ZF(赵志福);  Safaei, Babak;  Wang, Yanfei;  Liu, Yanwei;  Chu, Fulei;  Wei, Yueguang
Adobe PDF(5226Kb)  |  收藏  |  浏览/下载:182/30  |  提交时间:2022/09/27
Dynamic load  Molecular dynamics  Intergranular crack propagation  Stacking fault  Dislocation  
Dynamic behavior of CrMnFeCoNi high-entropy alloy in impact tension 期刊论文
INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, 2021, 卷号: 158, 页码: 12
作者:  Qiao Y(乔禹);  Chen Y(陈艳);  Cao FH(曹富华);  Wang HY(汪海英);  Dai LH(戴兰宏)
Adobe PDF(18881Kb)  |  收藏  |  浏览/下载:332/90  |  提交时间:2021/11/15
High-entropy alloy  Split Hopkinson tensile bar  Strain rate effect  Dislocation  Twin  
Peeling of graphene/molybdenum disulfide heterostructure at different angles: A continuum model with accommodations for van der Waals interaction 期刊论文
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2021, 卷号: 150, 页码: 11
作者:  Wei ZX(魏子雄);  Lin K(林岿);  Wang XH(王晓荷);  Zhao YP(赵亚溥)
Adobe PDF(3848Kb)  |  收藏  |  浏览/下载:295/81  |  提交时间:2021/11/01
A  Layered structures  B  Adhesion  C  Analytical modelling  C  Computational modelling  
Effects of the Laplace pressure on the cells during cytokinesis 期刊论文
ISCIENCE, 2021, 卷号: 24, 期号: 9, 页码: 17
作者:  Wang XH(王小环);  Li L(李龙);  Shao YF(邵颖峰);  Wei JC(韦佳辰);  Song, Ruopu;  Zheng SJ(郑松杰);  Li YQ(李俞桥);  Song F(宋凡)
Adobe PDF(4827Kb)  |  收藏  |  浏览/下载:254/66  |  提交时间:2021/11/01
Effects of Notches and Defects on Dwell Fatigue Mechanism and Fatigue Life of Ti-6Al-4V ELI Alloy Used in Deep-Sea Submersibles 期刊论文
JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2021, 卷号: 9, 期号: 8, 页码: 14
作者:  Sun J(孙健);  Wu, Lei;  Sun CQ(孙成奇)
Adobe PDF(5338Kb)  |  收藏  |  浏览/下载:315/118  |  提交时间:2021/11/01
titanium alloy Ti-6Al-4V ELI  notch  defect  dwell fatigue life  failure mechanism