IMECH-IR

浏览/检索结果: 共90条,第1-10条 帮助

限定条件        
已选(0)清除 条数/页:   排序方式:
Wavy interface enables extra strengthening in an additively manufactured high-entropy alloy with Mortise-Tenon architecture 期刊论文
INTERNATIONAL JOURNAL OF PLASTICITY, 2023, 卷号: 170, 页码: 18
作者:  Bai YJ(白云建);  Li YD(李亚东);  Wang YJ(王云江);  Zhang K(张坤);  Jiang QY(姜泉宇);  Liu ZS(刘子尚);  Hu, Zheng;  Wei BC(魏炳忱)
Adobe PDF(20723Kb)  |  收藏  |  浏览/下载:113/12  |  提交时间:2023/12/18
High entropy alloy  Laminated structure design  Additive manufacturing  Interface strengthening  Local chemical variation  
The influence of operation variables on stress spectrum of high-speed train bogie frames 期刊论文
VEHICLE SYSTEM DYNAMICS, 2023, 卷号: 61, 期号: 2, 页码: 499-512
作者:  Yuan Z(袁征);  Chen XJ(陈贤佳);  Li, Cen;  Ma, Lijun;  Li, Qiang;  Sun, Shouguang;  Wei YJ(魏宇杰)
Adobe PDF(2480Kb)  |  收藏  |  浏览/下载:205/46  |  提交时间:2022/05/17
Stress spectrum  fatigue  operation variable  high-speed train  segmented Weibull model  
A computational method for the load spectra of large-scale structures with a data-driven learning algorithm 期刊论文
SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2023, 卷号: 66, 期号: 1, 页码: 141-154
作者:  Chen XJ(陈贤佳);  Yuan, Zheng;  Li, Qiang;  Sun, ShouGuang;  Wei YJ(魏宇杰)
Adobe PDF(2512Kb)  |  收藏  |  浏览/下载:278/84  |  提交时间:2023/02/09
load spectrum  computational mechanics  deep learning  data-driven modeling  gated recurrent unit neural network  
A regime beyond the Hall-Petch and inverse-Hall-Petch regimes in ultrafine-grained solids 期刊论文
COMMUNICATIONS PHYSICS, 2022, 卷号: 5, 期号: 1, 页码: 9
作者:  Zhang, Huijun;  Liu, Feng;  Ungar, Goran;  Zheng ZY(郑中玉);  Sun, Qingping;  Han, Yilong
Adobe PDF(3619Kb)  |  收藏  |  浏览/下载:171/33  |  提交时间:2023/02/20
Bioinspired staggered-array structure design for flexible batteries 期刊论文
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2022, 卷号: 256, 页码: 16
作者:  Li S(李爽);  Li,Rui;  An,Dongqi;  Wang YK(王勇康);  Xu XK(徐新凯);  Xue,Riye;  Su YW(苏业旺)
Adobe PDF(9459Kb)  |  收藏  |  浏览/下载:222/59  |  提交时间:2022/11/14
Flexible battery  Bioinspired structure  Staggered array  Analytic model  Bulk volume  
Self-adaptive 3D lattice for curved sandwich structures 期刊论文
ADDITIVE MANUFACTURING, 2022, 卷号: 54, 页码: 17
作者:  Kang S(康帅);  Liu, Wenfeng;  Wang JT(王江涛);  Song HW(宋宏伟);  Yuan W(袁武);  Huang CG(黄晨光)
Adobe PDF(23201Kb)  |  收藏  |  浏览/下载:187/34  |  提交时间:2022/07/18
Pinned  3D lattice  Curved sandwich structures  Self-adaption  Mechanical properties  
Mechanical property comparisons between CrCoNi medium-entropy alloy and 316 stainless steels 期刊论文
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2022, 卷号: 108, 页码: 256-269
作者:  Liu XR(刘潇如);  Feng H(冯浩);  Wang J(王晶);  Chen XF(陈雪飞);  Jiang P(姜萍);  Yuan FP(袁福平);  Li, Huabing;  Ma, En;  Wu XL(武晓雷)
Adobe PDF(10797Kb)  |  收藏  |  浏览/下载:159/43  |  提交时间:2022/06/10
Medium-entropy alloy  Austenite stainless steel  Strain hardening  Ductility  Fracture toughness  Charpy impact toughness  
In situ determination of the extreme damage resistance behavior in stomatopod dactyl club 期刊论文
JOURNAL OF SYNCHROTRON RADIATION, 2022, 卷号: 29, 页码: 775-786
作者:  Dong, Zheng;  Chen, Sen;  Gupta, Himadri S.;  Zhao, Xiaoyi;  Yang, Yiming;  Chang, Guangcai;  Xue J(薛健);  Zhang, Yiyang;  Luo, Shengnian;  Dong, Yuhui;  Zhang, Yi
Adobe PDF(1953Kb)  |  收藏  |  浏览/下载:184/45  |  提交时间:2022/07/18
stomatopod dactyl  in situ characterization  3D crack evolution  fiber bridging  toughening mechanisms  
Mechanical behavior of thin CoCrFeNi high-entropy alloy sheet under laser shock peening 期刊论文
INTERMETALLICS, 2022, 卷号: 144, 页码: 6
作者:  Dong JL(董金磊);  Wu XQ(吴先前);  Huang CG(黄晨光)
Adobe PDF(7042Kb)  |  收藏  |  浏览/下载:190/31  |  提交时间:2022/07/18
High-entropy alloy  Mechanical properties  Laser shock peening  Grain refinement  Microstructure evolution  
Mechanical behavior and mechanism investigation on the optimized and novel bio-inspired nonpneumatic composite tires 期刊论文
REVIEWS ON ADVANCED MATERIALS SCIENCE, 2022, 卷号: 61, 期号: 1, 页码: 250-264
作者:  Liu B(刘兵);  Xu XH(许向红)
Adobe PDF(4341Kb)  |  收藏  |  浏览/下载:212/59  |  提交时间:2022/06/11
nonpneumatic composite tires  static mechanical properties  bionic design  saddle structure