IMECH-IR

浏览/检索结果: 共22条,第1-10条 帮助

限定条件                    
已选(0)清除 条数/页:   排序方式:
The influence of semiconducting properties of passive films on the cavitation erosion resistance of a NbN nanoceramic coating 期刊论文
ULTRASONICS SONOCHEMISTRY, 2021, 卷号: 71, 页码: 19
作者:  Xu, Jiang;  Peng, Shuang;  Li ZY(李正阳);  Jiang, Shuyun;  Xie, Zong-Han;  Munroe, Paul
Adobe PDF(20698Kb)  |  收藏  |  浏览/下载:426/47  |  提交时间:2021/03/03
NbN nanoceramic coating  Ultrasonic cavitation erosion  Mott-schottky  First-principle  Point defect model  
In vitro antibacterial properties of MoO3/SiO2/Ag2O nanocomposite coating prepared by double cathode glow discharge technique 期刊论文
SURFACE & COATINGS TECHNOLOGY, 2020, 卷号: 397, 页码: 16
作者:  Zhao YJ;  Xu J;  Li ZY(李正阳);  Fu T;  Jiang SY
Adobe PDF(8390Kb)  |  收藏  |  浏览/下载:351/183  |  提交时间:2020/08/26
MoO3  Ag2O  Photocatalytic properties  Antibacterial activity  Nanocomposite coating  
The Effects of Laser Parameters and the Ablation Mechanism in Laser Ablation of C/SiC Composite 期刊论文
MATERIALS, 2019, 卷号: 12, 期号: 19, 页码: 14
作者:  Pan SN(潘斯宁);  Li QY(李青宇);  Xian ZK;  Su NGg;  Zeng FZ
浏览  |  Adobe PDF(4453Kb)  |  收藏  |  浏览/下载:469/275  |  提交时间:2020/03/21
Laser ablation  C  SiC composite  Surface morphology  Ablation mechanism  Scanning electron microscopy (SEM)  
Fatigue crack and evolution prediction of compacted graphite iron under thermal loading with variable amplitude 期刊论文
ENGINEERING FAILURE ANALYSIS, 2019, 卷号: 102, 页码: 284-292
作者:  Pan SN(潘斯宁);  Chen R(陈茹)
浏览  |  Adobe PDF(3932Kb)  |  收藏  |  浏览/下载:206/64  |  提交时间:2019/11/27
Crack  Thermal fatigue  Variable amplitude  Evolution prediction  Compacted graphite iron  
Statistical analysis on rolling contact fatigue in railroad axle bearing steel 期刊论文
FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2019, 卷号: 42, 期号: 3, 页码: 651-663
作者:  Guo RB;  Yang GX;  Li ZY(李正阳);  Liu ZM;  Wei YJ(魏宇杰)
浏览  |  Adobe PDF(1973Kb)  |  收藏  |  浏览/下载:1647/1418  |  提交时间:2019/04/11
bearing steel  crack propagation  rolling contact fatigue  statistical analysis  
Collective evolution of surface microcrack for compacted graphite iron under thermal fatigue with variable amplitude 期刊论文
INTERNATIONAL JOURNAL OF FATIGUE, 2019, 卷号: 118, 页码: 139-149
作者:  Pan SN(潘斯宁);  Yu G(虞钢);  He XL(何秀丽);  Li SX(李少霞);  Zhang Y(张越);  Li QY(李清羽)
浏览  |  Adobe PDF(2100Kb)  |  收藏  |  浏览/下载:361/77  |  提交时间:2019/04/11
Thermal fatigue  Variable amplitude  Surface microcrack  Collective evolution  Compacted graphite iron  
Experimental and numerical study of crack damage under variable amplitude thermal fatigue for compacted graphite iron EN-GJV-450 期刊论文
INTERNATIONAL JOURNAL OF FATIGUE, 2018, 卷号: 113, 页码: 184-192
作者:  Pan SN(潘斯宁);  Yu G(虞钢);  Li SX(李少霞);  He XL(何秀丽);  Chen R(陈茹)
浏览  |  Adobe PDF(2850Kb)  |  收藏  |  浏览/下载:354/105  |  提交时间:2018/10/30
Crack damage  Variable amplitude thermal fatigue  Surface wedging process  Cast iron  Combustion chamber  
Application of millisecond pulsed laser for thermal fatigue property evaluation 期刊论文
OPTICS AND LASER TECHNOLOGY, 2018, 卷号: 99, 页码: 382-391
作者:  Pan SN(潘斯宁);  Yu G(虞钢);  Li SX(李少霞);  He XL(何秀丽);  Xia CY(夏春阳);  Ning WJ(宁伟健);  Zheng CY(郑彩云)
浏览  |  Adobe PDF(4348Kb)  |  收藏  |  浏览/下载:561/120  |  提交时间:2017/12/18
Millisecond Pulsed Laser  Thermal Fatigue  Cast Iron  Crack Evolution  
Thermo-mechanical responses of cracked quasi-transparent film to laser irradiation 期刊论文
ENGINEERING FRACTURE MECHANICS, 2018, 卷号: 199, 页码: 582-594
作者:  Peng Q(彭青);  Wu CW(吴臣武);  Huang CG(黄晨光)
浏览  |  Adobe PDF(3302Kb)  |  收藏  |  浏览/下载:381/89  |  提交时间:2018/10/19
Crack  Film  Thermal  Mechanical  Laser Irradiation  
Mechanical and electrochemical properties of nanocrystalline (Mo1-xCrx)(3)Si coatings: Experimental and modeling studies 期刊论文
Journal of Alloys and Compounds, 2014, 卷号: 611, 页码: 179-190
作者:  Xu J;  Li ZY(李正阳);  Lu XL;  Yan Y;  Munroe P;  Xie ZH;  Xu, J (reprint author), Nanjing Univ Aeronaut & Astronaut, Dept Mat Sci & Engn, 29 Yudao St, Nanjing 210016, Jiangsu, Peoples R China.
浏览  |  Adobe PDF(6293Kb)  |  收藏  |  浏览/下载:1013/375  |  提交时间:2014/09/03
Intermetallic  Eis  Polarization  First-principle Calculation