IMECH-IR  > 流固耦合系统力学重点实验室
Uncertain reduced-order modeling for unsteady aerodynamics with interval parameters and its application on robust flutter boundary prediction
Chen XJ; Qiu ZP; Wang XJ; Li YL; Wang RX(王睿星)
发表期刊AEROSPACE SCIENCE AND TECHNOLOGY
2017-12-01
卷号71页码:214-230
ISSN1270-9638
摘要

Computational fluid dynamics based unsteady aerodynamic reduced-order models can significantly improve the efficiency of transonic aeroelastic analysis. In this paper, the concept of the conventional model reduction method based on the system identification theory is extended to aerodynamic subsystems with the consideration of computational fluid dynamics-induced interval uncertainties in simulation to get the aerodynamic reduced-order model as uncertain as the original aerodynamic subsystem. The interval estimation of identified coefficients involved in the uncertain reduced-order model is obtained by utilizing the first-order interval perturbation method. The stability problem of the interval aeroelastic state-space model formulated based on the constructed uncertain aerodynamic reduced-order model is equivalently transformed into a standard interval eigenvalue problem associated with a real non-symmetric interval matrix in which the interval bounds of eigenvalues are evaluated by virtue of the first-order interval matrix perturbation algorithm. A new stability criterion for the interval aeroelastic state matrix is defined to predict the robust flutter boundary of the concerned uncertain aeroelastic system. Two numerical examples with respect to the uncertain aerodynamic ROM constructions and robust flutter boundary predictions of the two-dimensional Isogai wing and the three-dimensional AGARD 445.6 wing in transonic regime are implemented to assess the validity and accuracy of the presented approach. The obtained results are also compared with Monte Carlo simulation solutions as well as numerical and experimental results in the literatures indicating that the proposed method can provide a more robust and conservative prediction on the flutter boundary of an aeroelastic system compared with conventional deterministic aeroelastic analysis approaches. (C) 2017 Elsevier Masson SAS. All rights reserved.

关键词Uncertain Reduced-order Modeling Robust Flutter Analysis Interval Perturbation Method Uncertain Aeroelastic System
DOI10.1016/j.ast.2017.09.018
收录类别SCI ; EI
语种英语
WOS记录号WOS:000418313700022
关键词[WOS]TRANSONIC-DIP MECHANISM ; WING FLUTTER ; AEROELASTIC SYSTEMS ; QUANTIFICATION ; IDENTIFICATION ; DESIGN
WOS研究方向Engineering
WOS类目Engineering, Aerospace
项目资助者National Nature Science Foundation of the P.R. China(11432002 ; Major Research Project(MJ-F-2012-04) ; National Key Research and Development Program(2016YFB0200704) ; Defense Industrial Technology Development Program(JCKY2013601B001 ; 111 Project(B07009) ; 11572024) ; JCKY2016601B001)
论文分区一类
力学所作者排名5
引用统计
被引频次:17[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://dspace.imech.ac.cn/handle/311007/72233
专题流固耦合系统力学重点实验室
推荐引用方式
GB/T 7714
Chen XJ,Qiu ZP,Wang XJ,et al. Uncertain reduced-order modeling for unsteady aerodynamics with interval parameters and its application on robust flutter boundary prediction[J]. AEROSPACE SCIENCE AND TECHNOLOGY,2017,71:214-230.
APA Chen XJ,Qiu ZP,Wang XJ,Li YL,&Wang RX.(2017).Uncertain reduced-order modeling for unsteady aerodynamics with interval parameters and its application on robust flutter boundary prediction.AEROSPACE SCIENCE AND TECHNOLOGY,71,214-230.
MLA Chen XJ,et al."Uncertain reduced-order modeling for unsteady aerodynamics with interval parameters and its application on robust flutter boundary prediction".AEROSPACE SCIENCE AND TECHNOLOGY 71(2017):214-230.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Jp-2018-011.pdf(4860KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
Lanfanshu学术
Lanfanshu学术中相似的文章
[Chen XJ]的文章
[Qiu ZP]的文章
[Wang XJ]的文章
百度学术
百度学术中相似的文章
[Chen XJ]的文章
[Qiu ZP]的文章
[Wang XJ]的文章
必应学术
必应学术中相似的文章
[Chen XJ]的文章
[Qiu ZP]的文章
[Wang XJ]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Jp-2018-011.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。