IMECH-IR  > 非线性力学国家重点实验室
Dielectrophoretic separation with a floating-electrode array embedded in microfabricated fluidic networks
Jiang TY; Ren YK; Liu WY; Tang DW; Tao Y; Xue R; Jiang HY
发表期刊PHYSICS OF FLUIDS
2018-11-01
卷号30期号:11页码:Ar-112003
ISSN1070-6631
摘要In this study, we proposed a high-throughput separation strategy of the binary colloid mixture by dielectrophoresis (DEP) induced around large-scale bipolar electrode arrays embedded in microfabricated fluidic networks via a thorough numerical investigation. The usage of a floating electrode (FE) eliminates the need of external Ohmic connection to individual array units, therefore potentially steering the faddish design of new microdevice structures. Diffuse charge dynamics within the induced double layer at opposite ends of every FE permit a sinusoidal electric field to penetrate throughout the whole device, as long as the imposed field frequency is beyond the reciprocal resistor-capacitor time constant at the electrode/electrolyte interface. In this special device configuration, FEs interconnect multiple microchannels arranged in parallel. Pockets embedded on the sidewalls of fluidic channels help create strong field gradients at the tip of FEs and sharp pocket/channel junctions, improving the trapping performance of incoming bioparticles subjected to positive-DEP (pDEP) force, while latex beads experiencing negative-DEP (nDEP) stress are electrically squeezed to the midchannel and finally exit as a series of co-flowing thin streams with unequal translatory velocity. Taking the synergy of DEP force, induced-charge electro-osmosis, alternating-current electrothermal streaming, pressure-driven flow, and buoyancy effect into consideration, a numerical model is established to account for motion trajectories of micro-entities in full-scale three-dimensional space using the Lagrange particle track algorithm, as well as testing the feasibility of the device design in separation of the binary mixture containing yeast cells and polystyrene beads. Applying suitable voltage parameters of frequency O(1) MHz and electric field strength O(10) V/mm, highly efficient DEP separation is theoretically achievable under inlet flow velocity on the order of O(1) mm/s, where most of incoming yeasts are captured by pDEP within these five parallel branching channels, while polystyrene spheres are repelled by nDEP away from the FE array to form slim beams co-flowing into the outlet according to the calculation results. The microfluidic separation device exploiting the FE array offers great potential to build up scalable electrokinetic platforms for high-throughput on-chip sample treatment. Published by AIP Publishing.
DOI10.1063/1.5054800
URL查看原文
收录类别SCI ; EI
语种英语
WOS记录号WOS:000451733300009
关键词[WOS]INDUCED-CHARGE ELECTROOSMOSIS ; PARTICLES ; FLOW ; CELLS ; ELECTROROTATION ; ELECTROKINETICS ; MICROELECTRODES ; FIELDS
WOS研究方向Mechanics ; Physics, Fluids & Plasmas
WOS类目Mechanics ; Physics
项目资助者National Natural Science Foundation of China [11672095, 11702035, 11702075] ; Chang'an University Fundamental Research Funds for the Central Universities [310832171008, 300102328201, 300102328501] ; Shaanxi kefa (2018) [2018ZDCXL-GY-0504, 2018ZDCXL-GY-05-07-02, 9] ; State Key Laboratory of Robotics and System (HIT) [SKLRS201803B] ; Opening Fund of State Key Laboratory of Nonlinear Mechanics
论文分区一类/力学重要期刊
力学所作者排名1
引用统计
文献类型期刊论文
条目标识符http://dspace.imech.ac.cn/handle/311007/78151
专题非线性力学国家重点实验室
作者单位1.Harbin Inst Technol, State Key Lab Robot & Syst, West Da Zhi St 92, Harbin 150001, Heilongjiang, Peoples R China
2.Chinese Acad Sci, Inst Mech, State Key Lab Nonlinear Mech LNM, Beijing 100190, Peoples R China
3.Changan Univ, Sch Elect & Control Engn, Middle Sect Naner Huan Rd, Xian 710064, Shaanxi, Peoples R China
推荐引用方式
GB/T 7714
Jiang TY,Ren YK,Liu WY,et al. Dielectrophoretic separation with a floating-electrode array embedded in microfabricated fluidic networks[J]. PHYSICS OF FLUIDS,2018,30(11):Ar-112003.
APA Jiang TY.,Ren YK.,Liu WY.,Tang DW.,Tao Y.,...&Jiang HY.(2018).Dielectrophoretic separation with a floating-electrode array embedded in microfabricated fluidic networks.PHYSICS OF FLUIDS,30(11),Ar-112003.
MLA Jiang TY,et al."Dielectrophoretic separation with a floating-electrode array embedded in microfabricated fluidic networks".PHYSICS OF FLUIDS 30.11(2018):Ar-112003.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Jiang TY]的文章
[Ren YK]的文章
[Liu WY]的文章
百度学术
百度学术中相似的文章
[Jiang TY]的文章
[Ren YK]的文章
[Liu WY]的文章
必应学术
必应学术中相似的文章
[Jiang TY]的文章
[Ren YK]的文章
[Liu WY]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。