IMECH-IR  > 非线性力学国家重点实验室
Dissolutive flow in nanochannels: transition between plug-like and Poiseuille-like
Miao Q; Yuan QZ(袁泉子); Zhao YP(赵亚溥)
发表期刊MICROFLUIDICS AND NANOFLUIDICS
2018-12-01
卷号22期号:12页码:Ar-141
ISSN1613-4982
摘要Dynamic properties of dissolutive flow in nanochannels were investigated by molecular dynamics simulations. It turned out that the liquid flow pattern changes greatly after the dissolution effect taken into consideration. Liquid inside the channel has a plug-like velocity profile when the dissolubility is low, whereas a Poiseuille-like flow was observed as the dissolubility increases. By introducing the dissolution term to molecular kinetic theory, we explained the physical mechanisms of velocity transition. During which a modified dimensionless Galilei number was proposed to describe the effect of main forces. The results showed that in pressure-driven flow, when the dissolubility is low, the dominant dissipation is the viscous dissipation and the theoretical model of insolubility is acceptable. However, as the dissolubility increases, the dissolving dissipation takes priority, which results in the velocity profiles becoming Poiseuille-like. In addition, we analyzed the evolution of fluid density, number of dissolved solid particles and concentration distribution of solute. The liquid density varying from layered oscillation to uniform distribution was obtained, which can be described by a critical number. The analysis of solute concentration helps to establish the scaling relation among the dissolution rate, convection velocity, and diffusion coefficient. These findings not only help to understand the physical mechanisms of dissolutive flow but also help to control and optimize the flow patterns in dissoluble channels.
关键词Dissolutive flow Nanochannels Transport properties Molecular dynamics simulation
DOI10.1007/s10404-018-2146-1
URL查看原文
收录类别SCI ; EI
语种英语
WOS记录号WOS:000450945400002
关键词[WOS]MOLECULAR-DYNAMICS SIMULATION ; CARBON NANOTUBES ; CHEMICAL DISSOLUTION ; LIQUID SLIP ; WATER ; TRANSPORT ; SYSTEM ; CLASSIFICATION ; WETTABILITY ; MECHANISMS
WOS研究方向Nanoscience & Nanotechnology ; Instruments & Instrumentation ; Physics, Fluids & Plasmas
WOS类目Science & Technology - Other Topics ; Instruments & Instrumentation ; Physics
项目资助者National Natural Science Foundation of China (NSFC) [11722223, 11672300, 11872363, 51861145314] ; CAS Key Research Program of Frontier Sciences [QYZDJ-SSW-JSC019] ; Strategic Priority Research Program of the Chinese Academy of Sciences [XDB22040401]
论文分区二类
力学所作者排名1
引用统计
文献类型期刊论文
条目标识符http://dspace.imech.ac.cn/handle/311007/78157
专题非线性力学国家重点实验室
作者单位1.[Miao, Qing
2.Yuan, Quanzi
3.Chinese Acad Sci, Inst Mech, State Key Lab Nonlinear Mech, Beijing 100190, Peoples R China
4.Univ Chinese Acad Sci, Sch Engn Sci, Beijing 100049, Peoples R China
推荐引用方式
GB/T 7714
Miao Q,Yuan QZ,Zhao YP. Dissolutive flow in nanochannels: transition between plug-like and Poiseuille-like[J]. MICROFLUIDICS AND NANOFLUIDICS,2018,22(12):Ar-141.
APA Miao Q,袁泉子,&赵亚溥.(2018).Dissolutive flow in nanochannels: transition between plug-like and Poiseuille-like.MICROFLUIDICS AND NANOFLUIDICS,22(12),Ar-141.
MLA Miao Q,et al."Dissolutive flow in nanochannels: transition between plug-like and Poiseuille-like".MICROFLUIDICS AND NANOFLUIDICS 22.12(2018):Ar-141.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Miao Q]的文章
[袁泉子]的文章
[赵亚溥]的文章
百度学术
百度学术中相似的文章
[Miao Q]的文章
[袁泉子]的文章
[赵亚溥]的文章
必应学术
必应学术中相似的文章
[Miao Q]的文章
[袁泉子]的文章
[赵亚溥]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。